Obliczenia kwantowomechaniczne fazy skondensowanej

Prof. Marek Kręglewski

I. Podstawy eksperymentalne mechaniki kwantowej

- 1. Rozkład widmowy ciała doskonale czarnego
- 2. Zjawisko fotoelektryczne
- 3. Efekt Comptona
- 4. Widmo atomu wodoru

II. Podstawowe pojęcia mechaniki kwantowej

- 1. Hipoteza de Broglie'a
- 2. Dualizm falowo-korpuskularny
- 3. Zasada nieoznaczoności
- 4. Funkcja falowa
- 5. Normalizacja funkcji falowej
- 6. Gęstość prawdopodobieństwa
- 7. Operatory położenia i pędu
- 8. Operator energii całkowitej
- 9. Średnia kwantowo-mechaniczna
- 10. Równanie Schrödingera

III. Proste modele chemii kwantowej

- 1. Ruch cząstki swobodnej
- 2. Cząstka w pudle jednowymiarowym
 - a) kształt potencjału
 - b) zszywanie funkcji falowej na granicy obszarów
 - c) normalizacja funkcji falowej
 - d) energia cząstki w pudle
 - e) prawdopodobieństwo zaobserwowania cząstki w różnych częściach pudła potencjału
 - f) obliczenie średniej kwantowo-mechanicznej położenia i pędu
 - g) zasada wariacyjna
- 3. Cząstka w pudle dwuwymiarowym
 - a) Separacja dwuwymiarowego równania Schrödingera
 - b) lloczynowa postać funkcji falowej
 - c) Energia cząstki
 - d) Degeneracja stanów
- 4. Przejście przez barierę potencjału
 - a) Modelowanie ścieżki reakcji
 - b) Energia aktywacji dla złożonych układów molekularnych

IV. Atom wodoru

- 1. Operator energii potencjalnej w atomie wodoru
- 2. Współrzędne środka masy
- 3. Separacja ruchu translacyjnego od ruchów względnych
- 4. Układ współrzędnych sferycznych
- 5. Element objętości dV dla całki we współrzędnych sferycznych
- 6. Schemat rozwiązania równania
- 7. Zbiór liczb kwantowych dla atomu wodoru
- 8. Wykres gęstości radialnej dla stanów 1s i 2s

V. Atom wieloelektronowy

- 1. Doświadczenie Sterna-Gerlacha
- 2. Zasada nierozróżnialności jednakowych cząstek
- 3. Podstawowe własności bozonów i fermionów
- 4. Zakaz Pauliego
- 5. Hamiltonian dla atomu wieloelektronowego w przybliżeniu nieskończenie ciężkiego jądra
- 6. Atom helu
 - a) Funkcja falowa w przybliżeniu jednoelektronowym
 - b) Spinorbitale atomowe
 - c) Stany singletowe i tripletowe atomu helu
- 7. Atomy więcej niż dwuelektronowe
 - a) Wykładnikowa postać funkcji falowej
 - b) Poziomy energetyczne atomu w atomie wieloelektronowym
 - c) Wypadkowy spin układu elektronów
 - d) Reguła Hunda dla degeneracji orbitalnej

VI. Cząsteczka H₂+

- 1. Definicja cząsteczki
- 2. Hamiltonian cząsteczki
- 3. Orbitale molekularne a orbitale atomowe
- 4. Wariacyjne rozwiązanie równania Schrödingera dla cząsteczki
- 5. Całka nakrywania
- 6. Całka rezonansowa
- 7. Orbitale wiążące i antywiążące
- 8. Energia całkowita cząsteczki H₂+
 - a) odległość równowagowa R_e
 - b) energia wiązania D_e
- 9. Zastosowanie metody wariacyjnej do cząsteczki H₂⁺
- 10. Atom zjednoczony

VII. Cząsteczki dwuatomowe

- 1. Cząsteczka wodoru
 - a) Hamiltonian dla cząsteczki wodoru
 - b) Diagram korelacyjny dla cząsteczki wodoru (atom zjednoczony a atomy rozdzielone)
 - c) Całki kulombowskie i wymienne
- 2. Wiązania σ i π w cząsteczce i ich symetria
- 3. Odpychanie walencyjne
- 4. Cząsteczki dwuatomowe heterojądrowe
- 5. Orbitale zhybrydyzowane
- 6. Efektywność mieszania orbitali atomowych

VIII. Obliczenia ab initio

- 1. Metoda Hartree-Focka
- 2. Wyznacznikowe funkcje falowe Slatera
- 3. Orbitale Gaussowskie a Slaterowskie
- 4. Metoda liniowych kombinacji orbitali atomowych (LCAO)
- 5. Centrowanie orbitali atomowych
- 6. Metoda Hartree-Focka dla układów zamkniętopowłokowych
- 7. Metoda pola samouzgodnionego (SCF LCAO MO)
- 8. Orbitale HOMO i LUMO
- 9. Bazy orbitali atomowych
- 10. Korelacja ruchów elektronów
- 11. Energia korelacji
- 12. Metoda oddziaływania konfiguracji (CI)
- 13. Metoda sprzężonych klasterów (CC)
- 14. Rachunek zaburzeń Møllera-Plesseta (MP2)

IX. Obliczanie dla ciała stałego

- 1. Kwantowo-chemiczne modele ciała stałego.
- 2. Symetria cząsteczki
- 3. Symetria translacyjna
- 4. Modelowanie właściwości fizykochemicznych cząsteczek w fazie stałej.
- 5. Struktura pasmowa stanów elektronowych.
- 6. Przewidywanie reaktywności centrów aktywnych.
- 7. Modelowanie i rola wiązań wodorowych
- 8. Kompleksy molekularne

Zalecana literatura

- 1) W.Kołos, Chemia kwantowa, PWN, Warszawa 1991.
- 2) L.Piela, Idee chemii kwantowej, PWN, Warszawa 2001
- 3) W.Kołos, J.Sadlej, Atom i cząsteczka, WNT, Warszawa 1998

Widmo ciała doskonale czarnego

Widmo ciała doskonale czarnego (klasycznie)

Gęstość promieniowania $\frac{dU}{d\omega} = \rho(\omega) = \frac{2\omega^2}{\pi c^3} \langle E \rangle$

 $\beta = \frac{1}{kT}$

$$\langle E \rangle = -\frac{\partial}{\partial\beta} \ln \int_{0}^{\infty} e^{-\beta E} dE = -\frac{\partial}{\partial\beta} \ln \left(-\frac{1}{\beta} e^{-\beta E} \Big|_{0}^{\infty} \right) = -\frac{\partial}{\partial\beta} \ln \left(\frac{1}{\beta} \right) = \frac{\frac{1}{\beta^{2}}}{\frac{1}{\beta}} = \frac{\beta}{\beta^{2}} = \frac{1}{\beta}$$
$$\langle E \rangle = kT$$

Całkowita energia promieniowania (całkowanie czyli założenie ciągłości zmian energii)

$$U = \int_{0}^{\infty} \frac{2\omega^{2}}{\pi c^{3}} kT \, d\omega = \frac{2\omega^{3}}{3\pi c^{3}} kT \bigg|_{0}^{\infty} \to \infty$$

Katastrofa nadfioletowa

Widmo ciała doskonale czarnego

Planck założył, że energia jest emitowana w sposób nieciągły

$$\langle E \rangle = \frac{\sum_{n=1}^{\infty} E_n e^{-\beta E_n}}{\sum_{n=1}^{\infty} e^{-\beta E_n}} \qquad E_n = n\varepsilon_0 \qquad \qquad \mathcal{E}_0 = \mathbf{\eta} \mathcal{O} \qquad \qquad \hbar = \frac{h}{2\pi}$$

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \sum_{n=1}^{\infty} e^{-\beta E_n} = -\frac{\partial}{\partial \beta} \sum_{n=1}^{\infty} e^{-\beta n\varepsilon_0} \qquad \qquad \omega = 2\pi\nu$$

$$\sum_{n=1}^{\infty} e^{-\beta n\varepsilon_0} = 1 + e^{-\beta \varepsilon_0} + e^{-2\beta \varepsilon_0} + \dots = \frac{1}{1 - e^{-\beta \varepsilon_0}} \qquad \text{szereg geometryczny}$$

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln \frac{1}{1 - e^{-\beta \varepsilon_0}} = \frac{\varepsilon_0}{e^{-\beta \varepsilon_0} - 1} \qquad \qquad \text{szereg geometryczny}$$

$$u(\omega, T) = \frac{2\omega^2}{\pi c^3} \frac{\varepsilon_0}{e^{-\beta \varepsilon_0} - 1} = \frac{2\omega^2}{\pi c^3} \frac{\hbar \omega}{e^{-\beta \hbar \omega} - 1} = \frac{2\hbar}{\pi c^3} \frac{\omega^3}{e^{-\beta \hbar \omega} - 1} = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{-\frac{\hbar \nu}{kT}} - 1}$$

jednostki: J s s⁻³ m⁻² s² = J m⁻², czyli strumień energii przepływający przez powierzchnię 1 m²

Efekt fotoelektryczny

Prawa Lenarda (1899 rok)

- Liczba wyzwalanych elektronów proporcjonalna do natężenia promieniowania
- Maksymalna prędkość elektronów zależy od częstości promieniowania, nie od jego natężenia

Wzór Einsteina (1905 rok, nagroda Nobla w 1921):

$$hv = \frac{1}{2} m_{e} v^{2} + W$$

"In fact, it seems to me that the observations on "black-body radiation", photoluminescence, the <u>production</u> of cathode rays by ultraviolet light and other phenomena involving the emission or conversion of light can be better understood on the assumption that the energy of light is <u>distributed discontinuously</u> in space. According to the assumption considered here, when a light ray starting from a point is propagated, the energy is not continuously distributed over an ever increasing volume, but it consists of a finite number of energy quanta, localised in space, which move without being divided and which can be absorbed or emitted only as a whole."

Albert Einstein, 1905

Photoelectric effect

Es scheint mir nun in der Tat, daß die Beobachtungen über die "schwarze Strahlung", Photolumineszenz, die Erzeugung von Kathodenstrahlen durch ultraviolettes Licht und andere die Erzeugung bez. Verwandlung des Lichtes betreffende Erscheinungsgruppen besser verständlich erscheinen unter der Annahme, daß die Energie des Lichtes diskontinuierlich im Raume verteilt sei. Nach der hier ins Auge zu fassenden Annahme ist bei Ausbreitung eines von einem Punkte ausgehenden Lichtstrahles die Energie nicht kontinuierlich auf größer und größer werden der Räume verteilt, sondern es besteht dieselbe aus einer endlichen Zahl von in Raumpunkten lokalisierten Energiequanten, welche sich bewegen, ohne sich zu teilen und nur als Ganze absorbiert und erzeugt werden können.

"Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Albert Einstein, Annalen der Physik. Vol. 322 No. 6 (1905): 132–148.

Widmo atomu wodoru

Hydrogen Absorption Spectrum

Dualizm falowo-korpuskularny

Kluczowe założenie mechaniki kwantowej

Amplitudy prawdopodobieństwa

 $\langle przybywa \ do \ x | opuszcza \ s \rangle \equiv \langle x | s \rangle$

Amplituda prawdopodobieństwa przejścia od s do x

$$\phi_{1} \equiv \langle x | 1 \rangle \langle 1 | s \rangle \qquad P_{1} = |\phi_{1}|^{2} \qquad P_{12} = |\phi_{1} + \phi_{2}|^{2}$$
$$\phi_{2} \equiv \langle x | 2 \rangle \langle 2 | s \rangle \qquad P_{2} = |\phi_{2}|^{2}$$

W doświadczeniu obserwujemy prawdopodobieństwa, jednak w opisie zjawiska korzystamy ze składania amplitud prawdopodobieństwa

Zasada nieoznaczoności

$$\Delta p_x * \Delta x \ge \frac{\hbar}{2}$$
$$\Delta E * \Delta t \ge \hbar$$

1923 - Werner Heisenberg (1932 – Nagroda Nobla)

Sformułowanie dokładne zasady nieoznaczoności

$$\langle \Delta p_x^2 \rangle * \langle \Delta x^2 \rangle \ge \frac{\hbar^2}{4}$$

Funkcja falowa Postulat I

Wszystkie informacje o układzie można uzyskać z funkcji falowej Ψ Kwadrat modułu funkcji falowej $|\Psi|^2$ jest gęstością prawdopodobieństwa

$$\int_{-\infty}^{+\infty} |\Psi(x, y, z)|^2 dx \, dy \, dz = 1$$

Funkcja falowa musi być całkowalna z kwadratem

Operatory wielkości mechanicznych Postulat II

 $\hat{x} = x *$

 $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$

Operatory położenia i pędu

Operator wielkości złożonej powstaje przez zastąpienie w klasycznym wzorze na wielkość mechaniczną pędów p_x operatorami pędów \hat{p}_x

Operator energii całkowitej Hamiltonian

$$E_{calk} = E_{kin} + E_{pot} = \frac{m\vec{v}^2}{2} + V(x, y, z) = \frac{\vec{p}^2}{2m} + V(x, y, z) = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) + V(x, y, z)$$
$$\hat{H} = \hat{T} + \hat{V} = \frac{1}{2m} \left(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \right) + \hat{V}(x, y, z)$$

Ewolucja czasowa funkcji Postulat III

Jeżeli potencjał nie zmienia się w czasie to równanie Schrödingera przyjmuje postać:

$$\widehat{H}\Psi = E\Psi$$

gdzie E – energia stanu stacjonarnego, Ψ – funkcja własna

Wyniki pomiarów idealnych Postulat IV

Jeżeli funkcja falowa Ψ jest funkcją własną operatora (operator dowolnej wielkości fizycznej)

 $\hat{A}\Psi = a\Psi$

równanie własne

To wynikiem pomiaru może być tylko odpowiednia wartość własna a.

Średnia wartość wielkości mechanicznej

$$\langle \hat{A} \rangle = \frac{\int_{-\infty}^{\infty} \psi^* \hat{A} \psi dV}{\int_{-\infty}^{\infty} \psi^* \psi dV}$$
 $\langle \hat{A} \rangle = a \qquad \text{gdy } \Psi \text{ jest funkcją własną}$ operatora \hat{A}
 $\langle \hat{A} \rangle \neq a \qquad \text{gdy } \Psi \text{ nie jest funkcją}$ własną operatora \hat{A}

Przykłady równania własnego

 $\hat{A}\Psi = a\Psi$ \hat{A} – operator a – wartość własna

$$-\frac{d^{2}}{dx^{2}}\sin x = -\frac{d}{dx}\cos x = 1 * \sin x \qquad \hat{A} = -\frac{d^{2}}{dx^{2}} \qquad a = 1$$

$$x \in \langle 0, \pi \rangle \qquad \int_{0}^{\pi} (\sin x)^{2} dx = \frac{\pi}{2}$$

$$-\frac{d^{2}}{dx^{2}}e^{-x} = +\frac{d}{dx}e^{-x} = -1 * e^{-x} \qquad \hat{A} = -\frac{d^{2}}{dx^{2}} \qquad a = -1$$

$$x \in \langle 0, \infty \rangle \qquad \int_{0}^{\pi} e^{-2x} dx = \frac{1}{2}$$

$$-\frac{d^{2}}{dx^{2}}e^{x} = -\frac{d}{dx}e^{x} = -1 * e^{x} \qquad \hat{A} = -\frac{d^{2}}{dx^{2}} \qquad a = -1$$

$$x \in \langle -\infty, 0 \rangle \qquad \int_{-\infty}^{0} e^{2x} dx = \frac{1}{2}$$

Funkcje niebędące funkcjami własnymi

$$-\frac{d^2}{dx^2}x^2 = -\frac{d}{dx}2x = 2$$

brak funkcji po prawej stronie

$$-\frac{d^2}{dx^2}e^{-x^2} = +\frac{d}{dx}2xe^{-x^2} = (2-4x^2)e^{-x^2}$$

inna funkcja po prawej stronie

Spin cząstki Postulat V

Spin – wewnętrzny moment pędu cząstki

Spin opisany jest swoją współrzędną (σ)

Mierzalne są kwadrat wielkości spinu

i jedna z jego składowych

m_s = -s, -s+1, ...,+s

s jest charakterystyczne dla cząstki:

całkowite dla bozonów,

połówkowe dla fermionów

 $s(s+1)\hbar^2$

 $m_s\hbar$

Symetria funkcji falowej Postulat VI

Symetria dotyczy przenumerowania cząstek, czyli współrzędne cząstki 1 stają się współrzędnymi cząstki 2 i odwrotnie.

Dla fermionów
$$\Psi(1,2) = -\Psi(2,1)$$

Dla bozonów $\Psi(1,2) = +\Psi(2,1)$

Cząstka swobodna

$$H = \hat{r} + \hat{v} = \frac{mv_x^2}{2} + 0 = \frac{p_x^2}{2m} + 0$$

$$H = \hat{r} + \hat{v} = \frac{\hat{p}_x^2}{2m} + \hat{v}(x) = \frac{\left(-i\hbar\frac{d}{dx}\right)\left(-i\hbar\frac{d}{dx}\right)}{2m} + 0 = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$$
Operator energii

$$\hat{H}\Psi = E\Psi$$

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} = E\Psi(x)$$

$$H(x) = Ne^{ikx}$$

$$\frac{d\Psi}{dx} = N(ik)e^{ikx}$$

$$\frac{d^2\Psi}{dx^2} = N(ik)^2e^{ikx} = -Nk^2e^{ikx}$$

$$\frac{d\Psi}{dx} = N(-ik)e^{-ikx}$$

$$\frac{d^2\Psi}{dx^2} = N(-ik)^2e^{-ikx} = -Nk^2e^{-ikx}$$
With the vertice of the second seco

Cząstka swobodna cd.

m – masa cząstki

$$\hat{p}_{x}\Psi = p_{x}\Psi$$
$$-i\hbar \frac{d\Psi(x)}{dx} = p_{x}\Psi(x)$$

1....

$$\Psi(x) = Ne^{ikx} \qquad \frac{d\Psi}{dx} = Nike^{ikx} \qquad -i\hbar(Nike^{ikx}) = p_x(Ne^{ikx}) \qquad p_x = \hbar k$$
$$\Psi(x) = Ne^{-ikx} \qquad \frac{d\Psi}{dx} = -Nike^{-ikx} \qquad -i\hbar(-Nike^{-ikx}) = p_x(Ne^{-ikx}) \qquad p_x = -\hbar k$$

Funkcja Ψ jest funkcją własną operatora energii i operatora pędu.

W obszarach I i III cząstka nie może się znaleźć, a zatem

 $\psi_{\rm I}(x) = 0 \qquad \qquad \psi_{\rm III}(x) = 0$

W obszarze II (x \in <0,a>) równanie Schrödingera ma postać

$$\widehat{H}\psi_{\mathrm{II}} = E\psi_{\mathrm{II}} \qquad \qquad -\frac{\hbar^2}{2m}\frac{d^2\psi_{\mathrm{II}}(x)}{dx^2} = E\psi_{\mathrm{II}}(x)$$

$$\psi_{II}(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \qquad \qquad E = \frac{\hbar^2 \pi^2}{2ma^2} n^2$$

funkcja własna

wartość własna

n = 1.2.3....

Normalizacja funkcji

$$\psi_{II}(x) = N \sin\left(\frac{n\pi}{a}x\right)$$

$$N^{2} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx = N^{2} \int_{0}^{a} \frac{1}{2} \left[1 - \cos\left(\frac{2n\pi}{a}x\right)\right] dx =$$

$$N^{2} \int_{0}^{a} \left[\int_{0}^{a} x - \int_{0}^{a} \frac{1}{2} \left[1 - \cos\left(\frac{2n\pi}{a}x\right)\right] dx =$$

$$= N^{2} \frac{1}{2} \left[\int_{0}^{a} dx - \int_{0}^{a} \cos\left(\frac{1}{a}x\right) dx \right] =$$
$$= N^{2} \frac{1}{2} \left[x |_{0}^{a} - \frac{a}{2n\pi} \sin\left(\frac{2n\pi}{a}x\right) |_{0}^{a} \right] = N^{2} \frac{a}{2} = 1$$

$$N^2 = \frac{2}{a} \qquad \qquad N = \sqrt{\frac{2}{a}}$$

współczynnik normalizacji funkcji własnej

Warunki brzegowe dla funkcji

Cząstka w pudle potencjału

Obszar ruchu ograniczony do przedziału <0,a>.

$$\psi_{II}(x) = \sqrt{\frac{2}{\pi}} \sin\left(\frac{n\pi}{a}x\right)$$

$$E = \frac{\hbar^2 \pi^2}{2ma^2} n^2$$

Wartości oczekiwane

$$\langle \hat{A} \rangle = \frac{\int_{-\infty}^{\infty} \psi^* \hat{A} \psi dV}{\int_{-\infty}^{\infty} \psi^* \psi dV} \qquad \qquad \langle \hat{H} \rangle = \frac{\int_0^a \psi^* \hat{H} \psi dV}{\int_0^a \psi^* \psi dV}$$

Wartość oczekiwana energii

$$\langle E \rangle = \frac{\int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx}{\int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^2}{2m}\right) \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(\frac{d^2}{dx^2}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_0^a \sin^2\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{2}{a} \left(-\frac{\hbar^2}{2m}\right) \left(\frac{n\pi}{a}x\right) dx}{\frac{2}{a} \int_0^a \sin^2\left(\frac{n\pi}{a}x\right) dx} = \frac{\frac{\hbar^2 \pi^2}{2ma^2} n^2$$

Wartości oczekiwane

Wartość oczekiwana pędu

$$\langle \hat{p}_x \rangle = \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(-i\hbar\frac{d}{dx}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx = -i\hbar\frac{2}{a}\frac{n\pi}{a}\int_0^a \sin\left(\frac{n\pi}{a}x\right) \cos\left(\frac{n\pi}{a}x\right) dx =$$
$$= -i\hbar\frac{1}{a}\frac{n\pi}{a}\int_0^a \sin\left(\frac{2n\pi}{a}x\right) dx = 0$$

Wartość oczekiwana kwadratu pędu

$$\langle \hat{p}_{x}^{2} \rangle = \int_{0}^{a} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(-\hbar^{2} \frac{d^{2}}{dx^{2}}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx = \hbar^{2} \frac{2}{a} \left(\frac{n\pi}{a}\right)^{2} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx = \\ = \hbar^{2} \frac{2}{a} \left(\frac{n\pi}{a}\right)^{2} \frac{1}{2} \int_{0}^{a} \left[1 - \cos\left(\frac{2n\pi}{a}x\right)\right] dx = \frac{\hbar^{2} \pi^{2}}{a^{2}} n^{2}$$

Wartości oczekiwane

Wartość oczekiwana położenia

$$\langle \hat{x} \rangle = \int_{0}^{a} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) x \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx = \frac{2}{a} \int_{0}^{a} x \sin^{2}\left(\frac{n\pi}{a}x\right) dx = \frac{2}{a} \frac{1}{2} \int_{0}^{a} x \left[1 - \cos\left(\frac{2n\pi}{a}x\right)\right] dx$$
$$= \frac{1}{a} \left[\int_{0}^{a} x dx - x \frac{a}{2n\pi} \sin\left(\frac{2n\pi}{a}x\right)|_{0}^{a} + \frac{a}{2n\pi} \int_{0}^{a} \sin\left(\frac{2n\pi}{a}x\right) dx\right] = \frac{1}{a} \left[\frac{a^{2}}{2} - 0 - 0\right] = \frac{a}{2}$$

Wartość oczekiwana kwadratu położenia

$$\begin{split} \langle \widehat{x^2} \rangle &= \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) x^2 \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) dx = \frac{2}{a} \int_0^a x^2 \sin^2\left(\frac{n\pi}{a}x\right) dx = \frac{1}{a} \int_0^a x^2 \left[1 - \cos\left(\frac{2n\pi}{a}x\right)\right] dx \\ &= \frac{1}{a} \left[\int_0^a x^2 dx - x^2 \frac{a}{2n\pi} \sin\left(\frac{2n\pi}{a}x\right)|_0^a + \frac{2a}{2n\pi} \int_0^a x \sin\left(\frac{2n\pi}{a}x\right) dx\right] \\ &= \frac{1}{a} \left[\int_0^a x^2 dx - 0 + \frac{a}{n\pi} x \left(\frac{a}{2n\pi}\right) \sin\left(\frac{2n\pi}{a}x\right)|_0^a - \frac{1}{2} \left(\frac{a}{n\pi}\right)^2 \int_0^a \sin\left(\frac{2n\pi}{a}x\right) dx\right] = a^2 \left(\frac{1}{3} - \frac{1}{2n^2\pi^2}\right) dx \end{split}$$
Sprawdzenie zasady nieoznaczoności Heisenberga dla cząstki w pudle:

Nieoznaczoności położenia i pędu

 $\Delta x = x - \langle x \rangle \qquad \qquad \Delta p_x = p_x - \langle p_x \rangle$

$$\begin{split} \langle \Delta x^2 \rangle \langle \Delta p_x^2 \rangle &= \langle (x - \langle x \rangle)^2 \rangle \langle (p_x - \langle p_x \rangle)^2 \rangle = \\ &= \langle (x^2 - 2x \langle x \rangle + \langle x \rangle^2) \rangle \langle (p_x^2 - 2p_x \langle p_x \rangle + \langle p_x \rangle^2) \rangle = \\ &= (\langle x^2 \rangle - \langle x \rangle^2) (\langle p_x^2 \rangle - \langle p_x \rangle^2) = \\ &= \left[a^2 \left(\frac{1}{3} - \frac{1}{2n^2 \pi^2} \right) - \left(\frac{a}{2} \right)^2 \right] \left[\frac{\hbar^2 \pi^2 n^2}{a^2} - 0 \right] = \left(\frac{1}{3} - \frac{1}{4} - \frac{1}{2n^2 \pi^2} \right) \hbar^2 \pi^2 n^2 = \\ &= \left(\frac{1}{12} - \frac{1}{2n^2 \pi^2} \right) \hbar^2 \pi^2 n^2 = \frac{\hbar^2}{4} \left(\frac{1}{3} \pi^2 n^2 - 2 \right) > \frac{\hbar^2}{4} \end{split}$$

Cząstka w pudle potencjału

Funkcja własna (dokładna)

Funkcje próbne (przybliżone):

$$\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right)$$

$$\phi_1(x) = Nx(a-x)$$

$$\phi_2(x) = Nx^2(a-x)$$

$$\phi_3(x) = Nx(a-x)^2$$

$$\phi_4(x) = Nx^2(a-x)^2$$

Normalizacja:

$$N^{2} \int_{0}^{a} \left[x(a-x)^{2} \right]^{b} dx = N^{2} \int_{0}^{a} \left(a^{4}x^{2} - 4a^{3}x^{3} + 6a^{2}x^{4} - 4ax^{5} + x^{6} \right) dx = N^{2} \left(a^{4} \frac{x^{3}}{3} - 4a^{3} \frac{x^{4}}{4} + 6a^{2} \frac{x^{5}}{5} - 4a \frac{x^{6}}{6} + \frac{x^{7}}{7} \right) \Big|_{0}^{a} = N^{2} \left(\frac{a^{7}}{3} - a^{7} + \frac{6a^{7}}{5} - 2\frac{a^{7}}{3} + \frac{a^{7}}{7} \right) = N^{2} \frac{a^{7}}{105} = 1$$

$$N^{2} = \frac{105}{a^{7}} \qquad \qquad N = \sqrt{\frac{105}{a^{7}}} \qquad \qquad \phi_{3}(x) = \sqrt{\frac{105}{a^{7}}} x(a-x)^{2}$$

$$N^{2}\int_{0}^{a} \left[x^{2}(a-x)^{2}\right]^{2} dx = N^{2} \int_{0}^{a} \left(a^{4}x^{4} + 4a^{2}x^{6} + x^{8} - 4a^{3}x^{5} + 2a^{2}x^{6} - 4ax^{7}\right) dx = N^{2} \int_{0}^{a} \left(x^{8} - 4ax^{7} + 6a^{2}x^{6} - 4a^{3}x^{5} + a^{4}x^{4}\right) dx = N^{2} \left(\frac{x^{9}}{9} - 4a\frac{x^{8}}{8} + 6a^{2}\frac{x^{7}}{7} - 4a^{3}\frac{x^{6}}{6} + a^{4}\frac{x^{5}}{5}\right)\Big|_{0}^{a} = N^{2}a^{9} \left(\frac{1}{9} - \frac{1}{2} + \frac{6}{7} - \frac{2}{3} + \frac{1}{5}\right) = N^{2}\frac{a^{9}}{630} = 1$$

$$N^{2} = \frac{630}{a^{9}} \qquad \qquad N = \sqrt{\frac{630}{a^{9}}} \qquad \qquad \phi_{4}(x) = \sqrt{\frac{630}{a^{9}}} x^{2} (a - x)^{2}$$

Cząstka w pudle potencjału

Wykresy funkcji dokładnej i funkcji próbnych

Cząstka w pudle potencjału n=1

 $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right) \qquad E = \frac{\hbar^2 \pi^2}{2ma^2}$ $\phi_1(x) = \sqrt{\frac{30}{a^5}} x(a-x) \qquad \phi_2(x) = \sqrt{\frac{105}{a^7}} x^2(a-x) \qquad \phi_3(x) = \sqrt{\frac{105}{a^7}} x(a-x)^2 \qquad \phi_4(x) = \sqrt{\frac{630}{a^9}} x^2(a-x)^2$ $\varepsilon = \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right) \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\right) \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right) dx = \frac{2}{a} \left(\frac{\hbar^2}{2m}\right) \left(\frac{\pi}{a}\right)^2 \int_0^a \sin^2\left(\frac{\pi}{a}x\right) dx = \frac{2}{a} \left(\frac{\hbar^2}{2m}\right) \left(\frac{\pi}{a}\right)^2 \int_0^a \left[1 - \cos\left(\frac{2\pi}{a}x\right)\right] dx = \frac{\hbar^2 \pi^2}{2ma^2} = \frac{\hbar^2 9.87}{2ma^2}$

 $\varepsilon = \int_{0}^{a} \left| \frac{30}{a^{5}} x(a-x) \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \right)_{a} \right| \frac{30}{a^{5}} x(a-x) dx = \frac{60}{a^{5}} \left(\frac{\hbar^{2}}{2m} \right) \int_{0}^{a} x(a-x) dx = \frac{60}{a^{5}} \left(\frac{\hbar^{2}}{2m} \right) \left(a \frac{x^{2}}{2} - \frac{x^{3}}{3} \right) \Big|_{a}^{a} = \frac{\hbar^{2} 10}{2ma^{2}}$ $\varepsilon = \int_{0}^{a} \left| \frac{105}{a^{7}} x^{2} (a-x) \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \right)_{a} \right| \frac{105}{a^{7}} x^{2} (a-x) dx = \frac{105}{a^{7}} \left(-\frac{\hbar^{2}}{2m} \right) \int_{0}^{a} x^{2} (a-x) (2a-6x) dx$ $=\frac{105}{a^7}\left(-\frac{\hbar^2}{2m}\right)\int_0^a (2a^2x^2 - 8ax^3 + 6x^4)dx = \frac{105}{a^7}\left(-\frac{\hbar^2}{2m}\right)\left(2a^2\frac{x^3}{3} - 8a\frac{x^4}{4} + 6\frac{x^5}{5}\right)\Big|^a = \frac{\hbar^2 14}{2ma^2}$ $\varepsilon = \int_{0}^{a} \sqrt{\frac{105}{a^{7}}} x(a-x)^{2} \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}}\right) \sqrt{\frac{105}{a^{7}}} x(a-x)^{2} dx = \frac{105}{a^{7}} \left(-\frac{\hbar^{2}}{2m}\right) \int_{0}^{a} x(a-x)^{2} (-4a+6x) dx$ $=\frac{105}{a^{7}}\left(-\frac{\hbar^{2}}{2m}\right)\int_{0}^{a}(-4a^{3}x+14a^{2}x^{2}-16ax^{3}+6x^{4})dx=\frac{105}{a^{7}}\left(-\frac{\hbar^{2}}{2m}\right)\left(-4a^{3}\frac{x^{2}}{2}+14a^{2}\frac{x^{3}}{3}-16a\frac{x^{4}}{4}+6\frac{x^{5}}{5}\right)\Big|_{a}^{a}=\frac{\hbar^{2}14}{2ma^{2}}$ $\varepsilon = \int_{0}^{a} \sqrt{\frac{630}{a^{9}}x^{2}(a-x)^{2}\left(-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\right)} \sqrt{\frac{630}{a^{9}}x^{2}(a-x)^{2}dx} = \frac{630}{a^{9}}\left(-\frac{\hbar^{2}}{2m}\right) \int_{0}^{a} x^{2}(a-x)^{2}(2a^{2}-12ax+12x^{2})dx = \frac{630}{a^{9}}\left(-\frac{\hbar^{2}}{2m}\right) \sqrt{\frac{630}{a^{9}}x^{2}(a-x)^{2}(a-x)^{2}dx} = \frac{630}{a^{9}}\left(-\frac{\hbar^{2}}{2m}\right) \sqrt{\frac{630}{a^{9}}x^{2}(a-x)^{2}(a$ $=\frac{630}{a^9}\left(\frac{\hbar^2}{2m}\right)\int_a^a (-2a^4x^2 + 16a^3x^3 - 38a^2x^4 + 36ax^5 - 12x^6)dx$ $=\frac{630}{a^7}\left(\frac{\hbar^2}{2m}\right)\left(-2a^4\frac{x^3}{3}+16a^3\frac{x^4}{4}-38a^2\frac{x^5}{5}+36a\frac{x^6}{6}-12\frac{x^7}{7}\right)\Big|_0^a=\frac{\hbar^212}{2ma^2}$

Dwuwymiarowe pudło potencjału

$$\begin{bmatrix} -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}} - \frac{\hbar^{2}}{2m}\frac{d^{2}}{dy^{2}} \end{bmatrix} \Psi(x, y) = E\Psi(x, y)$$

$$\Psi(x, y) = \psi_{x}(x)\psi_{y}(y)$$

$$\begin{bmatrix} -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}} - \frac{\hbar^{2}}{2m}\frac{d^{2}}{dy^{2}} \end{bmatrix} \psi_{x}(x)\psi_{y}(y) = E\psi_{x}(x)\psi_{y}(y)$$

$$X = 0$$

$$\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{x}(x)\psi_{y}(y) - \frac{\hbar^{2}}{2m}\frac{d^{2}}{dy^{2}}\psi_{x}(x)\psi_{y}(y) = E\psi_{x}(x)\psi_{y}(y)$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{x}(x) - \frac{\hbar^{2}}{2m}\frac{d^{2}}{dy^{2}}\psi_{x}(x)\psi_{y}(y) = E\psi_{x}(x)\psi_{y}(y)$$

$$-\frac{\hbar^{2}}{2m}\frac{1}{dx^{2}}\frac{d^{2}}{dx^{2}}\psi_{x}(x) - \frac{\hbar^{2}}{2m}\frac{1}{dy^{2}}\psi_{y}(y) = E\psi_{x}(x)\psi_{y}(y)$$

$$-\frac{\hbar^{2}}{2m}\frac{1}{\sqrt{x}(x)}\frac{d^{2}}{dx^{2}}\psi_{x}(x) - \frac{\hbar^{2}}{2m}\frac{1}{\sqrt{y}(y)}\frac{d^{2}}{dy^{2}}\psi_{y}(y) = E$$

$$-\frac{\hbar^{2}}{2m}\frac{1}{\sqrt{x}(x)}\frac{d^{2}}{dx^{2}}\psi_{x}(x) = E_{x}$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{x}(x) = E_{x}$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{x}(x) = E_{x} + E_{y} = E$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{x}(x) = E_{x}\psi_{x}(x)$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dy^{2}}\psi_{y}(y) = E_{y}\psi_{y}(y)$$

$$E_{x} = \frac{\hbar^{2}\pi^{2}}{2m}\frac{n^{2}}{a^{2}} \quad \psi_{n}(x) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi}{a}x\right)$$

$$E_{y} = \frac{\hbar^{2}\pi^{2}}{2m}\frac{k^{2}}{b^{2}} \quad \psi_{x}(y) = \sqrt{\frac{2}{b}}\sin\left(\frac{k\pi}{b}y\right)$$

$$n=1,2,3,...$$

$$k=1,2,3,...$$

Dwuwymiarowe pudło potencjału

$$E_{n,k} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n^2}{a^2} + \frac{k^2}{b^2} \right)$$

$$\Psi_{n,k}(x,y) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \sqrt{\frac{2}{b}} \sin\left(\frac{k\pi}{b}x\right)$$
$$n = 1, 2, 3, \dots \qquad k = 1, 2, 3, \dots$$

Stany zdegenerowane:

a=b

Wtedy $E_{1,2=} E_{2,1}$

$$E_{1,2} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{1^2}{a^2} + \frac{2^2}{a^2} \right) = \frac{\hbar^2 \pi^2}{2m} \frac{5}{a^2}$$
$$\Psi_{1,2}(x,y) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi}{a}y\right)$$

$$E_{2,1} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{2^2}{a^2} + \frac{1^2}{a^2} \right) = \frac{\hbar^2 \pi^2}{2m} \frac{5}{a^2}$$
$$\Psi_{2,1}(x, y) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi}{a}x\right) \sqrt{\frac{2}{a}} \sin\left(\frac{\pi}{a}y\right)$$

Prostokątna bariera potencjału

Cząstka nadbiega z prawej strony z energią E>0 i albo zawraca po odbiciu od bariery lub przechodzi przez barierę

W obszarze $x \le 0$

$$\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} = E\Psi(x) \qquad \qquad \Psi_{\rm I}(x) = Ae^{ikx} + Be^{-ikx}$$

W obszarze x≥a
$$-\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} = E\Psi(x)$$
 $\Psi_{\rm III}(x) = Ce^{ikx}$

2m

$$k = + \left(\frac{2mE}{\hbar^2}\right)^{1/2}$$

Prostokątna bariera potencjału

Rozwiązania dla 2 możliwych sytuacji

$$\mathsf{E}\mathsf{>V}_0 \qquad \qquad \Psi_{\mathrm{II}}(x) = Fe^{i\alpha x} + Ge^{-i\alpha x}$$

$$\mathsf{E} \le \mathsf{V}_0 \qquad \qquad \Psi_{\mathrm{II}}(x) = D e^{-\beta x}$$

$$\alpha = + \left(\frac{2m(E-V_0)}{\hbar^2}\right)^{1/2}$$

$$\beta = + \left(\frac{2m(V_0 - E)}{\hbar^2}\right)^{1/2}$$

Warunki brzegowe dla funkcji

$$\frac{d}{dx}\Psi_{\rm I}(0) = \frac{d}{dx}\Psi_{\rm II}(0)$$

$$\frac{d}{dx}\Psi_{\rm II}(a) = \frac{d}{dx}\Psi_{\rm III}(a)$$

 $\Psi_{\rm II}(a) = \Psi_{\rm III}(a)$

 $\Psi_{\rm I}(0) = \Psi_{\rm II}(0)$

Prostokątna bariera potencjału

Współczynnik przejścia dla E<V₀

$$\left|\frac{C}{A}\right|^{2} = \left[1 + \frac{V_{0}^{2}\sinh^{2}(\beta a)}{4E(V_{0} - E)}\right]^{-1} = \left[1 + \frac{\sinh(\beta a)}{4\frac{E}{V_{0}}\left(1 - \frac{E}{V_{0}}\right)}\right]^{-1}$$

Jaki byłby obraz klasyczny?

$$E \le V_0 \qquad \qquad \left|\frac{C}{A}\right|^2 = 0$$
$$E > V_0 \qquad \qquad \left|\frac{C}{A}\right|^2 = 1$$

Atom wodoru – opis klasyczny

$$F_c = \frac{mv^2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = F_e$$

$$\mathbf{v} = \frac{e}{\left(4\pi\varepsilon_0 \ mr\right)^{1/2}} \approx 2.10^6 \ ms^{-1}$$

$$E = T + V \approx 13.6 \ eV$$

$$v = \frac{1}{T} \approx 6.10^{15} \ s^{-1}$$

Zredukowana masa 2 ciał ⇒ ruch zredukowanej (efektywnej) masy wokół środka masy

$$mr_{e} = Mr_{N} \quad r = r_{e} + r_{N}$$
$$m\omega r_{e}^{2} + M\omega r_{N}^{2} = n\eta$$
$$\frac{mM}{m+M} \omega r^{2} = n\eta$$
$$\frac{mM}{m+M} = \mu$$
$$\mu / m = 0.99945 (H)$$
$$0.99972 (D)$$

$$\widehat{H} = -\frac{\hbar^2}{2M_j} \left[\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + \frac{\partial^2}{\partial z_j^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_e^2} + \frac{\partial^2}{\partial z_e^2} \right] - \frac{e^2}{r}$$

$$r = \sqrt{(x_j - x_e)^2 + (y_j - y_e)^2 + (z_j - z_e)^2}$$

Atom wodoru 1a

Transformacja hamiltonianu do współrzędnych środka masy i względnych

$$\begin{aligned} \frac{\partial}{\partial x_e} &= \frac{\partial X}{\partial x_e} \frac{\partial}{\partial X} + \frac{\partial x}{\partial x_e} \frac{\partial}{\partial x} = \frac{m}{m+M} \frac{\partial}{\partial X} + \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x_j} &= \frac{\partial X}{\partial x_j} \frac{\partial}{\partial X} + \frac{\partial x}{\partial x_j} \frac{\partial}{\partial x} = \frac{M}{m+M} \frac{\partial}{\partial X} - \frac{\partial}{\partial x} \\ \frac{\partial^2}{\partial x_e^2} &= \left(\frac{m}{m+M} \frac{\partial}{\partial X} + \frac{\partial}{\partial x}\right)^2 = \frac{m^2}{(m+M)^2} \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial x^2} + \frac{2m}{m+M} \frac{\partial^2}{\partial X \partial x} \\ \frac{\partial^2}{\partial x_j^2} &= \left(\frac{M}{m+M} \frac{\partial}{\partial X} + \frac{\partial}{\partial x}\right)^2 = \frac{M^2}{(m+M)^2} \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial x^2} - \frac{2M}{m+M} \frac{\partial^2}{\partial X \partial x} \\ - \frac{\hbar^2}{2} \left[\frac{1}{M} \frac{\partial^2}{\partial x_j^2} + \frac{1}{m} \frac{\partial^2}{\partial x_e^2}\right] \\ &= -\frac{\hbar^2}{2} \left[\frac{M}{(m+M)^2} \frac{\partial^2}{\partial X^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} - \frac{2}{m+M} \frac{\partial^2}{\partial X \partial x} + \frac{m}{(m+M)^2} \frac{\partial^2}{\partial X^2} + \frac{1}{m} \frac{\partial^2}{\partial x^2} + \frac{2}{m+M} \frac{\partial^2}{\partial X \partial x}\right] \\ &= -\frac{\hbar^2}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar^2}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} - \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} + \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} + \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2(m+M)} \frac{\partial^2}{\partial X^2} + \frac{\hbar}{2\mu} \frac{\partial^2}{\partial x^2} \\ &= -\frac{\hbar}{2\mu} \frac{\partial^2}{\partial X^2} +$$

Podobnie dla par współrzędnych {Y,y}, {Z,z} a stąd:

$$\widehat{H} = -\frac{\hbar^2}{2(M_j + m_e)} \left[\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \right] - \frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] - \frac{e^2}{r}$$

$$\widehat{H} = -\frac{\hbar^2}{2(M_j + m_e)} \left[\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \right] - \frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] - \frac{e^2}{r}$$
ruch translacyjny atomu
H_{tr}
ruch względny jądra i elektronu

$$\Psi(x_j, y_j, z_j, x_e, y_e, z_e) = \Psi(X, Y, Z, x, y, z) = \Phi(X, Y, Z)\psi(x, y, z)$$

Równanie Schrödingera po separacji:

$$\hat{H}_{tr}\Phi(X,Y,Z) = E_{tr}\Phi(X,Y,Z)$$
$$\hat{H}_{e}\psi(x,y,z) = E\psi(x,y,z)$$
$$E_{c}=E_{tr}+E$$

$$\widehat{H}_e = -\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] - \frac{e^2}{r}$$

Równanie Schrödingera:

$$\hat{H}_{e}\psi(x, y, z) = E\psi(x, y, z)$$

Współrzędne sferyczne:

 $x = r \sin\theta \cos\varphi$

 $y = r \sin\theta \sin\phi$

 $z = r \cos \theta$

 $r = \sqrt{x^2 + y^2 + z^2}$

 $0 \le r < \infty$, $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$

$$\widehat{H}_{e} = -\frac{\hbar^{2}}{2\mu r^{2}} \left[\frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right] - \frac{e^{2}}{r}$$

$$\hat{H}_{e}\psi(r,\theta,\varphi) = E\psi(r,\theta,\varphi)$$
$$\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

równanie we współrzędnych sferycznych

Po separacji układ 3 równań:

równanie: azvmutalne

$$-i\hbar\frac{\partial}{\partial\varphi}\Phi_{m}(\varphi) = m\hbar\Phi_{m}(\varphi)$$
azymutalne

$$-\hbar^{2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) - \frac{m^{2}}{\sin^{2}\theta}\right]\Theta_{lm}(\theta) = l(l+1)\Theta_{lm}(\theta)$$
horyzontalne

$$\left\{-\frac{\hbar^{2}}{2\mu r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right) - l(l+1)\right] - \frac{e^{2}}{r}\right\}R_{nlm}(r) = E_{n}R_{nlm}(r)$$
radialne

Warunki brzegowe generujące liczby kwantowe

Równanie azymutalne:

$$\Phi(\varphi) = \Phi(\varphi + 2\pi) \qquad \qquad m = 0, \pm 1, \pm 2, \pm 3, \dots$$

Równanie horyzontalne:

 $\Theta(\theta)$ całkowalna z kwadratem *I=0, 1, 2, 3, ... m=-I,-I+1,...,0,...,+I*

Równanie radialne:

R(r) całkowalna z kwadratem *n*=1, 2, 3, ... *l*=0,1,...,*n*-1

Energia atomu wodoru
$$E = -\frac{\mu e^4}{2\hbar^2 n^2} = -R_H \frac{1}{n^2}$$
 $R_H = \frac{\mu e^4}{2\hbar^2} = 109677 \ cm^{-1}$

$$R_{\infty} = \frac{m_e e^4}{2\hbar^2 (4\pi\varepsilon_0)^2} = 109737 \ cm^{-1}$$

Funkcje falowe dla atomu wodoru

 $\Psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi)$

Funkcje radialne:

 $a_0 = 0,529 \text{ Å} = 0,529 \cdot 10^{-10} \text{ m}$ promień Bohra $a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$

Element objętości dV

Element objętości: $dV = dx \, dy \, dz = r^2 \sin\theta \, dr \, d\theta \, d\varphi$ Całka normalizacji: $\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} |\psi_{nlm}(r,\theta,\varphi)|^2 r^2 \sin\theta \, dr \, d\theta \, d\varphi = \int_{0}^{\infty} |R(r)|^2 r^2 dr \int_{0}^{\pi} \int_{0}^{2\pi} |Y_l^m(\theta,\varphi)|^2 \sin\theta \, d\theta \, d\varphi = 1$

 $R^{2}(r) r^{2}$

Radialna gęstość prawdopodobieństwa:

Ciekawe:

Dla l=n-1 jedno jedyne maksimum dla r=n²*a₀

Warstwica orbitalu: zbiór wszystkich punktów w przestrzeni, którym odpowiada ta sama, zadana wartość orbitalu, ε.

Kontur orbitalu (powierzchnia graniczna orbitalu): powierzchnia najmniejszej figury geometrycznej, na zewnątrz której wartość orbitalu jest wszędzie mniejsza co do modułu od zadanej, małej, dodatniej wartości.

Kontur gęstości prawdopodobieństwa: powierzchnia najmniejszej figury geometrycznej, na zewnątrz której gęstość prawdopodobieństwa jest wszędzie mniejsza co do modułu od zadanej, małej, dodatniej wartości ε.

Dla orbitalu 1s:

$$\frac{Z^3}{\pi a_0^3} e^{\frac{-2Zr}{a_0}} = \varepsilon$$
$$r = -\frac{a_0}{2Z} \ln \frac{\varepsilon \pi a_0^3}{Z^3}$$

- Gdy $\varepsilon = 0.01 a_0^{-3}$, wówczas:
- r=1,73 a₀ dla atomu wodoru,
- r=1,38 a_0 dla jonu He⁺,
- r=1,13 a_0 dla jonu Li²⁺.

Jakościowe kontury orbitali typu s, p, d

S

 \mathbf{p}_{z} $\mathbf{p}_{\mathbf{y}}$ $\mathbf{p}_{\mathbf{x}}$

 d_{yz}

Orbitale atomowe

$$\psi_{100} = N_{1s} e^{-Zr/a_0}$$

$$\psi_{200} = N_{2s} \left(2 - \frac{Zr}{a_0} \right) e^{-\frac{Zr}{2a_0}}$$

$$\psi_{210} = N_{2p} r e^{-\frac{Zr}{2a_0}} \cos\theta$$

$$N_{1s} = \frac{1}{\pi} \left(\frac{Z}{a_0} \right)^{\frac{3}{2}}$$
$$N_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0} \right)^{\frac{3}{2}}$$
$$N_{2p} = \frac{1}{4\sqrt{\pi}} \left(\frac{Z}{a_0} \right)^{\frac{5}{2}}$$

$$\psi_{211} = \frac{1}{\sqrt{2}} N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta e^{i\varphi}$$
$$\psi_{21-1} = \frac{1}{\sqrt{2}} N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta e^{-i\varphi}$$

Kombinacje liniowe orbitali atomowych

$$\frac{1}{\sqrt{2}} (\psi_{211} + \psi_{21-1}) \qquad \qquad \frac{-i}{\sqrt{2}} (\psi_{211} - \psi_{21-1})$$

$$2p_x = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \frac{(e^{i\varphi} + e^{-i\varphi})}{2} = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \cos \varphi = N_{2p} x e^{-\frac{Zr}{2a_0}}$$

$$2p_y = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \frac{(e^{i\varphi} - e^{-i\varphi})}{2i} = N_{2p} r e^{-\frac{Zr}{2a_0}} \sin \theta \sin \varphi = N_{2p} y e^{-\frac{Zr}{2a_0}}$$

Spin

Doświadczenie Sterna Gerlacha

Wiązka atomów srebra przepuszczana przez pole magnetyczne

Konfiguracja elektronowa srebra

Ag: 1s²/2s²2p⁶/3s²3p⁶3d¹⁰/4s²4p⁶4d¹⁰/5s¹

Stany elektronu

Spinorbital

 $\varphi_{nlmm_s} = \psi_{nlm}\sigma_{m_s}$

Zasada nierozróżnialności jednakowych cząstek

a,b - cząstki

1,2 - detektory

Prawdopodobieństwo zarejestrowania cząstek różnych $P_1 = |\phi_a(1) \phi_b(2)|^2$ $P_2 = |\phi_a(2) \phi_b(1)|^2$

Gdy cząstki jednakowe $P_1 = P_2$, zatem $\phi_a(1) \phi_b(2) = \pm \phi_a(2) \phi_b(1)$ Cząstki interferują ze sobą

Zasada nierozróżnialności jednakowych cząstek

Amplituda rozpraszania jednakowych cząstek:

Bozony	$\phi_{a}(1) \phi_{b}(2) + \phi_{a}(2) \phi_{b}(1)$	spin całkowity
Fermiony	$\phi_{a}(1) \phi_{b}(2) - \phi_{a}(2) \phi_{b}(1)$	spin połowkowy

Funkcja falowa dla fermionów jest antysymetryczna:

 $\Phi(1,2,3,...) = - \Phi(2,1,3,...)$

Jeżeli fermiony zajmują te same stany czyli 1=2, to $\varphi_a(1) \varphi_b(1) - \varphi_a(1) \varphi_b(1) \equiv 0$ Jest to treść zakazu Pauliego.

Funkcja falowa dla bozonów jest symetryczna

Bozony dążą do obsadzenia tego samego stanu – stąd nadciekłość helu ⁴He

Atom wieloelektronowy

Powłoki elektronowe: $n = 1,2,3,... \rightarrow K,L,M,...$ $I = 0,1,2,... \rightarrow s,p,d,...$

Reguła Hunda:

W wypadku degeneracji orbitalnej najniższą energię ma stan o maksymalnej multipletowości

Atomy wieloelektronowe

Term widmowy ^{2S+1}L_J

2S+1 to multipletowość, gdzie S to całkowity spin orbitalu

Jak wyznaczyć L, J, S ? J = L+S, L+S-1, ..., |L-S|

Atom węgla C konfiguracja elektronowa 1s² 2s² 2p²

Zapełnione powłoki dają S = 0

$I_1 I_2$	S ₁ S ₂	m ₁ m ₂	ML	L	M _S	S
1 1	$+\frac{1}{2}$ $-\frac{1}{2}$	1 1	2	2	0	0
	$\pm \frac{1}{2}$ $\pm \frac{1}{2}$	1 0	1	1	+1,0,-1, 0	1
	$\pm \frac{1}{2}$ $\pm \frac{1}{2}$	1 -1	0	0	+1,0,-1, <mark>0</mark>	0
	$+\frac{1}{2}$ $-\frac{1}{2}$	0 0	0		0	
	$\pm \frac{1}{2}$ $\pm \frac{1}{2}$	0 -1	-1		+1,0,-1, 0	
	$+\frac{1}{2}$ $-\frac{1}{2}$	-1 -1	-2		0	

Termy: ³P₂, ³P₁, ³P₀, ¹D₂, ¹S₀

Atom helu 1

$$\begin{split} \widehat{H} &= -\frac{\hbar^2}{2M_j} \left[\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + \frac{\partial^2}{\partial z_j^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial z_1^2} \right] - \frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial z_2^2} \right] - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{r_{12}} \\ \widehat{H} &= -\frac{\hbar^2}{2M_j} \Delta_j - \frac{\hbar^2}{2m_e} \Delta_1 - \frac{\hbar^2}{2m_e} \Delta_2 - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{r_{12}} \\ \Delta - laplasjan \end{split}$$

- $\widehat{H}_{e} = \sum_{i=1}^{2} \left(-\frac{\hbar^{2}}{2m_{e}} \Delta_{i} \frac{2e^{2}}{r_{i}} \right) + \frac{e^{2}}{r_{12}}$
- $\widehat{H}_e(i) = -\frac{\hbar^2}{2m_e}\Delta_i \frac{2e^2}{r_i}$

 $\Psi(1,2) = \psi_1(1)\psi_2(2)$

 $\varphi_1(1) = \psi_1(1)\sigma_1(1)$

 $\Phi(1,2) = \varphi_1(1)\varphi_2(2) - \varphi_2(1)\varphi_1(2)$ $\Phi(2,1) = \varphi_1(2)\varphi_2(1) - \varphi_2(2)\varphi_1(1)$ $\Phi(1,2) = -\Phi(2,1)$ Hamiltonian elektronowy w przybliżeniu nieskończenie ciężkiego jądra

 $\widehat{H}_{e}(i)\psi_{n}(i) = E_{n}\psi_{n}(i)$ Hamiltonian jednoelektronowy

Przybliżenie jednoelektronowe

Spinorbital=orbital*funkcja_spinowa

Antysymetryzowana funkcja wieloelektronowa

Atom helu 2

 $\Phi(1,2) = \Psi(1,2)\sigma(1,2)$ Funkcja spinorbitalna= funkcja przestrzenna* funkcja spinowa $\Psi_{s}(1,2) = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) + \psi_{2}(1)\psi_{1}(2)] = \Psi_{s}(2,1)$ Symetria funkcji przestrzennej $\Psi_{a}(1,2) = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{2}(1)\psi_{1}(2)] = -\Psi_{a}(2,1)$ $\sigma_{a}(1,2) = \frac{1}{\sqrt{2}} [\alpha(1)\beta(2) - \beta(1)\alpha(2)] = -\sigma_{a}(2,1)$ $\sigma_{s}(1,2) = \alpha(1)\alpha(2) = +\sigma_{s}(2,1)$ Symetria funkcji spinowej $\sigma_{s}(1,2) = \beta(1)\beta(2) = +\sigma_{s}(2,1)$ $\sigma_{s}(1,2) = \frac{1}{\sqrt{2}} [\alpha(1)\beta(2) + \beta(1)\alpha(2)] = +\sigma_{s}(2,1)$ $\Phi_{\text{singlet}}(1,2) = \frac{1}{\sqrt{2}} \left[\psi_1(1) \psi_2(2) + \psi_2(1) \psi_1(2) \right] \frac{1}{\sqrt{2}} \left[\alpha(1) \beta(2) - \beta(1) \alpha(2) \right]$ Funkcje oraz. singletowa (S=0) $\Phi_{\text{tryplet}}(1,2) = \frac{1}{\sqrt{2}} [\psi_1(1)\psi_2(2) - \psi_2(1)\psi_1(2)] \begin{cases} \alpha(1)\alpha(2) \\ \beta(1)\beta(2) \\ \frac{1}{\sqrt{2}} [\alpha(1)\beta(2) + \beta(1)\alpha(2)] \end{cases}$ i trypletowa (S=1)

Atom wieloelektronowy

$$\widehat{H}_{e} = \sum_{i=1}^{n} \left(-\frac{\hbar^{2}}{2m_{e}} \Delta_{i} - \frac{ne^{2}}{r_{i}} \right) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{e^{2}}{r_{ij}}$$

$$\Phi(1,2) = \frac{1}{\sqrt{2}} \left[\varphi_1(1)\varphi_2(2) - \varphi_2(1)\varphi_1(2) \right] = \frac{1}{\sqrt{2}} \begin{vmatrix} \varphi_1(1) & \varphi_1(2) \\ \varphi_2(1) & \varphi_2(2) \end{vmatrix}$$

Wyznacznikowa postać antysymetryzowanej funkcji falowej dla atomu helu

$$\Phi(1,2,...,n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_1(1) & \varphi_1(2) & \dots & \varphi_1(n) \\ \varphi_2(1) & \varphi_2(2) & \dots & \varphi_2(n) \\ \dots & \dots & \dots & \dots \\ \varphi_n(1) & \varphi_n(2) & \dots & \varphi_n(n) \end{vmatrix}$$

Antysymetryzowana funkcja dla układu n elektronów spełniająca zakaz Pauliego – podstawa przybliżenia jednoelektronowego

E_{HF} : Energia Hartree-Focka – najniższa energia uzyskana w ramach przybliżenia jednoelektronowego

 $E_{korelacji} = E_{dokladna} - E_{HF}$ Energia korelacji

Metoda wariacyjna

Jak rozwiązać równanie Schrödingera, gdy nieznana jest postać dokładna funkcji falowej? Szukamy energii najbliższej energii stanu podstawowego i odpowiadającej jej przybliżonej funkcji falowej.

Jeżeli Φ jest tożsame z ψ , to ε jest równe E₀.

Jeżeli Φ jest przybliżeniem ψ , to ε jest większe od E₀.

$$\hat{H}\psi = E\psi$$
$$\varepsilon = \frac{\int \Phi^* \hat{H} \Phi dV}{\int \Phi^* \Phi dV}$$
$$\Phi = \sum_{i=1}^N c_i \varphi_i$$

Metoda kombinacji liniowych:

Najlepszej funkcji Φ szukamy w postaci kombinacji liniowej funkcji ϕ_i , które nazywamy bazą funkcyjną. Minimalizując ϵ ze względu na współczynniki c_i:

$$\frac{\partial \varepsilon}{\partial c_i} = 0 \qquad dla \ i = 1, \dots, N$$

uzyskujemy układ N równań na współczynniki c_i:

$$c_i (H_{ii} - \varepsilon) + \sum_{j \neq i} c_j (H_{ij} - S_{ij} \varepsilon) = 0 \quad dla \ i = 1, ..., N$$

Metoda wariacyjna

$$\varepsilon = \frac{\int \left(\sum_{i=1}^{N} c_i \varphi_i\right)^* \widehat{H} \sum_{j=1}^{N} c_j \varphi_j \, dV}{\int \left(\sum_{i=1}^{N} c_i \varphi_i\right)^* \sum_{j=1}^{N} c_j \varphi_j \, dV}$$

$$\varepsilon = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}^{*} c_{j} \int \varphi_{i}^{*} \widehat{H} \varphi_{j} dV}{\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}^{*} c_{j} \int \varphi_{i}^{*} \varphi_{j} dV} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}^{*} c_{j} H_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}^{*} c_{j} S_{ij}}$$

$$H_{ij} = \int \varphi_i^* \widehat{H} \varphi_j \, dV$$

$$S_{ij} = \int \varphi_i^* \varphi_j \, dV$$

$$\frac{\partial \varepsilon}{\partial c_i} = 0 \qquad dla \ i = 1, ..., N$$

Z warunku na minimum ε uzyskujemy układ N równań na współczynniki c;

$$c_i (H_{ii} - \varepsilon) + \sum_{j \neq i} c_j (H_{ij} - S_{ij} \varepsilon) = 0 \quad dla \ i = 1, ..., N$$

Metoda wariacyjna dla cząstki w pudle (1)

$$\varphi_{1}(x) = \sqrt{\frac{30}{a^{7}}} x(a-x)$$
$$\varphi_{2}(x) = \sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2}$$
$$\Phi(x) = c_{1}\varphi_{1}(x) + c_{2}\varphi_{2}(x)$$

Funkcje bazowe ϕ_1 i ϕ_2 są unormowane, tzn. S₁₁=1 i S₂₂=1.

Układ równań wiekowych:

$$\begin{cases} c_1(H_{11} - \varepsilon) + c_2(H_{12} - S_{12}\varepsilon) = 0\\ c_1(H_{21} - S_{21}\varepsilon) + c_2(H_{22} - \varepsilon) = 0 \end{cases}$$

Warunki istnienia rozwiązań układu równań liniowych jednorodnych:

$$\begin{vmatrix} H_{11} - \varepsilon & H_{12} - S_{12}\varepsilon \\ H_{21} - S_{21}\varepsilon & H_{22} - \varepsilon \end{vmatrix} = 0 \qquad \qquad H_{12} = H_{21} \qquad S_{12} = S_{21} = S \\ \begin{vmatrix} H_{11} - \varepsilon & H_{12} - S\varepsilon \\ H_{12} - S\varepsilon & H_{22} - \varepsilon \end{vmatrix} = 0$$

Normalizacja funkcji $\Phi(x)$:

$$\int \Phi^*(x) \Phi(x) dx = \int \Phi^2(x) dx = \int [c_1 \varphi_1(x) + c_2 \varphi_2(x)]^2 dx = c_1^2 \int \varphi_1^2 dx + c_2^2 \int \varphi_2^2 dx + 2c_1 c_2 \int \varphi_1 \varphi_2 dx = 1$$

$$c_1^2 + c_2^2 + 2c_1 c_2 S = 1$$

Metoda wariacyjna dla cząstki w pudle (2)

$$\begin{bmatrix} c_1(H_{11} - \varepsilon) + c_2(H_{12} - S\varepsilon) = 0 \\ c_1(H_{12} - S\varepsilon) + c_2(H_{22} - \varepsilon) = 0 \end{bmatrix}$$

$$c_{1}^{2} + c_{2}^{2} + 2c_{1}c_{2}S = 1$$

$$c_{2} = -c_{1}\frac{H_{11} - \varepsilon}{H_{12} - S\varepsilon}$$

 $\begin{vmatrix} H_{11} - \varepsilon & H_{12} - S\varepsilon \\ H_{12} - S\varepsilon & H_{22} - \varepsilon \end{vmatrix} = 0$

$$\begin{split} & (H_{11} - \varepsilon)(H_{22} - \varepsilon) - (H_{12} - S\varepsilon)^2 = 0 \\ & (1 - S^2)\varepsilon^2 - (H_{11} + H_{22} - 2H_{12}S)\varepsilon + H_{11}H_{22} - H_{12}^2 = 0 \\ & \Delta = (H_{11} + H_{22} - 2H_{12}S)^2 - 4(1 - S^2)(H_{11}H_{22} - H_{12}^2) = \\ & = (H_{11} - H_{22})^2 + 4H_{12}^2 + 4S(H_{11}H_{22}S - H_{11}H_{12} - H_{22}H_{12}) \\ & \varepsilon_1 = \frac{1}{2(1 - S^2)} \Big[H_{11} + H_{22} - 2H_{12}S - \sqrt{\Delta} \Big] \\ & \varepsilon_2 = \frac{1}{2(1 - S^2)} \Big[H_{11} + H_{22} - 2H_{12}S + \sqrt{\Delta} \Big] \end{split}$$

Dla każdej wyznaczonej energii ϵ_1 lub ϵ_2 rozwiązujemy układ równań na współczynniki c_1 i c_2 .

Metoda wariacyjna dla cząstki w pudle (3)

Obliczenie całek w równaniach:

$$S_{12} = S_{21} = S = \int_0^a \sqrt{\frac{30}{a^5}x(a-x)} \sqrt{\frac{630}{a^9}x^2(a-x)^2} dx = \frac{\sqrt{30*630}}{a^7} \int_0^a x^3(a^3 - 3a^2x + 3ax^2 - x^3) dx =$$
$$= \frac{30\sqrt{21}}{a^7} \left[a^3 \frac{x^4}{4} - 3a^2 \frac{x^5}{5} + 3a \frac{x^6}{6} - \frac{x^7}{7} \right]_0^a = 30\sqrt{21} \left[\frac{1}{4} - \frac{3}{5} + \frac{1}{2} - \frac{1}{7} \right] = 30\sqrt{21} \frac{35 - 84 + 70 - 20}{140} = \frac{3\sqrt{21}}{14}$$

$$H_{12} = \int_{0}^{a} \sqrt{\frac{30}{a^{5}}} x(a-x) \left(-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}}\right) \sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2} dx = \frac{\hbar^{2}}{2m} \frac{\sqrt{30 * 630}}{a^{7}} \int_{0}^{a} (ax-x^{2})(-2a^{2}+12ax-12x^{2}) dx$$
$$= \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \int_{0}^{a} (-2a^{3}x+12a^{2}x^{2}-12ax^{3}+2a^{2}x^{2}-12ax^{3}+12x^{4}) dx$$
$$= \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{7}} \left[-2a^{3} \frac{x^{2}}{2}+14a^{2} \frac{x^{3}}{3}-24a \frac{x^{4}}{4}+12 \frac{x^{5}}{5}\right]_{0}^{a} = \frac{\hbar^{2}}{2m} \frac{30\sqrt{21}}{a^{2}} \left[-1+\frac{14}{3}-6+\frac{12}{5}\right] = \frac{\hbar^{2}}{2m} \frac{2\sqrt{21}}{a^{2}}$$

$$H_{21} = \int_0^a \sqrt{\frac{630}{a^9} x^2 (a-x)^2} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) \sqrt{\frac{30}{a^5} x (a-x)} dx = \frac{\hbar^2}{2m} \frac{30\sqrt{21}}{a^7} \int_0^a (a^2 x^2 - 2ax^3 + x^4) dx$$
$$= \frac{\hbar^2}{2m} \frac{30\sqrt{21}}{a^7} \left[2a^2 \frac{x^3}{3} - 4a \frac{x^4}{4} + 2\frac{x^5}{5} \right]_0^a = \frac{\hbar^2}{2m} \frac{30\sqrt{21}}{a^2} \left[\frac{2}{3} - 1 + \frac{2}{5} \right] = \frac{\hbar^2}{2m} \frac{2\sqrt{21}}{a^2}$$
Metoda wariacyjna dla cząstki w pudle (4)

Obliczenie całek w równaniach:

$$H_{12} = H_{21} = \frac{\hbar^2}{2m} \frac{2\sqrt{21}}{a^2} \qquad S = \frac{3\sqrt{21}}{14} \qquad \text{wyrażamy w}$$

$$H_{11} = \int_0^a \sqrt{\frac{30}{a^5}} x(a-x) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\right) \sqrt{\frac{30}{a^5}} x(a-x) dx = \frac{\hbar^2 10}{2ma^2}$$

$$H_{22} = \int_0^a \sqrt{\frac{630}{a^9}} x^2(a-x)^2 \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\right) \sqrt{\frac{630}{a^9}} x^2(a-x)^2 dx = \frac{\hbar^2 12}{2ma^2}$$

Całki energetyczne ħ² w jednostkach $\overline{2ma^2}$

Układ równań wiekowych:

 $2\sqrt{21}$

$$c_{1}(10-\varepsilon)+c_{2}(2\sqrt{21}-\varepsilon 3\sqrt{21}/14)+c_{2}(12-\varepsilon)=0$$

$$\begin{vmatrix} 10-\varepsilon & 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon\\ 2\sqrt{21}-\frac{3\sqrt{21}}{14}\varepsilon & 12-\varepsilon \end{vmatrix} = 0$$

$$\begin{vmatrix} 1-\frac{9*21}{196} \\ \varepsilon^{2}-(10+12-2*2*\sqrt{21}*3*\sqrt{21}/14)\varepsilon+10*12-4*21=0\\ \frac{1}{28}\varepsilon^{2}-4\varepsilon+36=0\\ \Delta=16-4*(1/28)*36=76/7 & \sqrt{\Delta}=3,295017884\\ \varepsilon_{1}=(4-3,295017884)*(28/2)=9,869719621\\ \varepsilon_{2}=(4+3,295017884)*(28/2)=102,13025038 \end{vmatrix}$$

Metoda wariacyjna dla cząstki w pudle (5)

 $c_1^2 + c_2^2 + 2c_1c_2S = 1$

 $c_2 = -c_1 \frac{H_{11} - \varepsilon}{H_{12} - S\varepsilon}$

Obliczenie współczynników kombinacji liniowej:

 $\varepsilon_1 = 9,869719621$

 $c_2 = -c_1 \frac{10 - 9,869719621}{2*\sqrt{21} - 9,869719621*3*\sqrt{21}/14}$

 $c_2 = 0,247271562c_1$

$$c_1 = \sqrt{\frac{1}{1 + 0,247271562^2 + 2*0,247271562*2*\sqrt{21}/14}}$$

 $c_1 = 0,80405626$

 $c_2 = 0,19882025$

 $\Phi_1 = 0,80405626\varphi_1 + 0,19882025\varphi_2$

Dokładna wartość E₁ dla cząstki w pudle [w jednostkach $\frac{\hbar^2}{2ma^2}$] $E_1 = \pi^2 = 9,869604401$ $\varepsilon_1 > E_1$

Metoda wariacyjna dla cząstki w pudle (6)

Wykresy funkcji:

Funkcja sin(x) i kombinacja liniowa funkcji ϕ_1 i ϕ_2 pokrywają się w skali rysunku

Metoda Hartree-Focka dla atomu

Nieograniczona metoda Hartree-Focka (UHF – Unrestricted HF)

$$\phi_p(i) = \varphi_p(i)\sigma_p(i)$$
 $\sigma_p = \alpha \ \text{lub} \ \beta$

gdzie: φ_{ρ} jest rzeczywista, a liczby elektronów ze spinami α i β są różne Stosowana dla układów otwartopowłokowych (inne energie orbitalne dla spinów α i β)

Ograniczona metoda Hartree-Focka (RHF – Restricted HF)

Parzysta liczba elektronów, równe liczba elektronów opisanych funkcjami spinowymi α i β , obsadzonych orbitali jest dwa razy mniej niż obsadzonych spinorbitali.

 $\phi_{2p-1}(i) = \varphi_p(i)\alpha(i)$ $\phi_{2p}(i) = \varphi_p(i)\beta(i)$

Spinorbitali jest tyle, ile elektronów, natomiast na jeden orbital przypadają dwa elektrony.

LUMO (pierwszy orbital wirtualny)

Bazy funkcyjne 1

Metoda Hartree-Focka-Roothana SCF-LCAO-MO

Przybliżenie jednoelektronowe:

$$\Psi(1,2,...,n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(1) & \phi_1(2) & \dots & \phi_1(n) \\ \phi_2(1) & \phi_2(2) & \dots & \phi_2(n) \\ \dots & \dots & \dots & \dots \\ \phi_n(1) & \phi_n(2) & \dots & \phi_n(n) \end{vmatrix}$$
$$\phi_i(k) = \phi_i(k)\sigma_i(k) \qquad \sigma_i = \alpha \ \text{lub} \ \beta$$

Metoda LCAO (Linear Combination of Atomic Orbitals)

Funkcje jednoelektronowe jako liniowe kombinacje funkcji bazy:

$$\varphi_i(1) = \sum_{j=1}^m c_{ij} \chi_j(1)$$

Bazy funkcyjne 2

W cząsteczce: rozwinięcie orbitali molekularnych $\phi_i(r)$ na funkcje bazowe - orbitale atomowe $\chi_i(r)$

$$\varphi_i(\vec{r}) = \sum_{j=1}^m c_{ij} \chi_j(\vec{r})$$

Orbitale atomowe $\chi_j(r)$ są zazwyczaj centrowane na jądrach atomowych Orbital atomowy AO = część radialna × część kątowa

$$\chi(\vec{r}) = \chi(r,\theta,\varphi) = R(r)Y_{lm}(\theta,\varphi)$$

Bazy funkcyjne 3Część kątowa I=0123spdf

AO grupujemy w powłoki o określonym l mające tę samą część radialną Część radialna – 2 rodzaje baz:

```
slaterowskie R(r) = wielomian(r) * exp(-\alphar)
```

gaussowskie R(r) = wielomian(r) * exp(- αr^2)

Właściwą asymptotykę dla małych i dużych r mają funkcje slaterowskie, ale obliczenia całek z r₁₂ są bardzo czasochłonne i dlatego stosuje się częściej funkcje gaussowskie.

Liniowa Kombinacja Orbitali Atomowych - LCAO

$$\psi_{j}(r,\theta,\varphi) = \sum_{k=1}^{K} a_{jk} \chi_{k}(r,\theta,\varphi)$$

 χ_i mogą być orbitalami:

Slatera (STO)

Gaussa (GTO)

Skontraktowanymi Gaussa (CGTO)

$$Nr^{n-1}e^{-\zeta r}Y_{lm}(\theta,\varphi)$$

 $Nx^{i}y^{j}z^{k}e^{-lpha r^{2}}$

 $\mathsf{c}_1 \operatorname{GTO}_1 + \mathsf{c}_2 \operatorname{GTO}_2 + \dots$

Skontraktowane bazy gaussowskie

$$\chi_j(r) = \sum_{k=1}^K a_{jk} G_k(r)$$

gdzie:

 χ_i jest skontraktowanym orbitalem typu gaussowskiego CGTO

G_k jest prymitywnym orbitalem Gaussa PGTO

Współczynniki rozwinięcia ustalone przez twórców oprogramowania, nie podlegają optymalizacji w trakcie obliczeń SCF.

Przykład w Excelu

Baza minimalna (single zeta SZ)

po jednej funkcji radialnej R(r) dla orbitalu danej podpowłoki

Przykład:

atom C $1s^2 2s^2 2p^2$

Baza: jedna funkcja radialna dla reprezentacji orbitalu 1s jedna funkcja radialna dla reprezentacji orbitalu 2s jedna funkcja radialna dla reprezentacji orbitalu 2p

Czyli 5 funkcji bazy

 χ_{1s} , χ_{2s} , χ_{2px} , χ_{2py} , χ_{2pz}

Baza double zeta (DZ)

po dwie funkcje radialne R(r) dla orbitalu danej podpowłoki

Przykład:

atom C $1s^2 2s^2 2p^2$

Baza: dwie funkcje radialne dla reprezentacji orbitalu 1s dwie funkcje radialne dla reprezentacji orbitalu 2s dwie funkcje radialne dla reprezentacji orbitalu 2p

Czyli 10 funkcji bazy

 $\chi_{1s;1} \ , \ \chi_{1s;2} \ , \ \chi_{2s;1} \ , \ \chi_{2s;2} \ , \ \chi_{2px;1} \ , \ \chi_{2px;2} \ , \ \chi_{2py;1} \ , \ \chi_{2py;2} \ , \ \chi_{2pz;1} \ , \ \chi_{2pz;2} \ , \$

Baza double zeta valence (DZV)

po jednej funkcji radialnej R(r) dla orbitali powłok wewnętrznych po dwie funkcje radialne R(r) dla orbitali powłok walencyjnych

Przykład:

atom C $1s^2 2s^2 2p^2$

Baza: jedna funkcja radialna dla reprezentacji orbitalu 1s dwie funkcje radialne dla reprezentacji orbitalu 2s dwie funkcje radialne dla reprezentacji orbitalu 2p

Czyli 9 funkcji bazy

 X_{1s} , $X_{2s;1}$, $X_{2s;2}$, $X_{2px;1}$, $X_{2px;2}$, $X_{2py;1}$, $X_{2py;2}$, $X_{2pz;1}$, $X_{2pz;2}$

Analogicznie baza triple zeta valence (TZV)

po jednej funkcji radialnej R(r) dla orbitali powłok wewnętrznych po trzy funkcje radialne R(r) dla orbitali powłok walencyjnych

Przykład:

atom C $1s^2 2s^2 2p^2$

Baza: jedna funkcja radialna dla reprezentacji orbitalu 1s trzy funkcje radialne dla reprezentacji orbitalu 2s trzy funkcje radialne dla reprezentacji orbitalu 2p Czyli 13 funkcji bazy

 $\chi_{1s}\;,\;\chi_{2s;1}\;,\;\chi_{2s;2}\;,\;\chi_{2s;3}\;,\;\chi_{2px;1}\;,\;\chi_{2px;2}\;,\;\chi_{2px;3}\;,\;\chi_{2py;1}\;,\;\chi_{2py;2}\;,\;\chi_{2py;3}\;,\;\chi_{2pz;1}\;,\;\chi_{2pz;2}\;$

Funkcje polaryzacyjne – dodatkowe funkcje dla orbitali nieobsadzonych Przykład:

atom C 1s² 2s² 2p²

Baza double zeta valence polaryzacyjna(DZVP)

Baza: jedna funkcja radialna dla reprezentacji orbitalu 1s dwie funkcje radialne dla reprezentacji orbitalu 2s dwie funkcje radialne dla reprezentacji orbitalu 2p jedna funkcja radialna dla reprezentacji orbitali 3d Czyli 15 funkcji bazy

1funkcja 1s, 2 funkcje 2s, 2 funkcje 2px, 2 funkcje 2py, 2 funkcje 2pz, dodatkowo 6 funkcji 3d $(d_{xy}, d_{yz}, d_{xz}, d_{x2}, d_{y2}, d_{z2})$

Funkcje dyfuzyjne – dodatkowe funkcje radialne o małym wykładniku tzn. rozciągające się daleko od jąder

Stosowane dla anionów

Bazy Pople'owskie

6-31G VDZ

funkcje rdzenia: 1 kontrakcja z 6 prymitywów Gaussowskich funkcje walencyjne: 2 kontrakcje (z 3 i 1 prymitywów)

3-21G VDZ tyle samo kontrakcji lecz mniej prymitywów

6-311G VTZ

funkcje rdzenia: 1 kontrakcja z 6 prymitywów Gaussowskich funkcje walencyjne: 3 kontrakcje (z 3, 1 i 1 prymitywów)

Typowy opis bazy funkcyjnej

STO-2G

S 2 1.00

BASIS="STO-2G"

Prymitywny orbital Gaussa

$$GTO = \frac{2\alpha}{\pi^{0.75}} e^{-\alpha r^2} = N_{\alpha} e^{-\alpha r^2}$$

H 0

- S 2 1.00
 - 27.38503303 0.43012850

1.30975638 0.43012850 0.23313597 0.67891353

- 4.87452205 0.67891353
- SP 2 1.00
 - 1.13674819 0.04947177 0.51154071 0.28830936 0.96378241 0.61281990

Dla H (1s):
$$\psi_{1s}^{H} = 0,43012850 * N_{\alpha}e^{-1,30975638r^{2}} + 0,67891353 * N_{\alpha}e^{-0,233313597r^{2}}$$

Dla C (1s): $\psi_{1s}^{C} = 0,43012850 * N_{\alpha}e^{-27,38503303r^{2}} + 0,67891353 * N_{\alpha}e^{-4,87452205r^{2}}$
(2s): $\psi_{2s}^{C} = 0,04947177 * N_{\alpha}e^{-1,13674819r^{2}} + 0,96378241 * N_{\alpha}e^{-0,28830936r^{2}}$
(2p_z): $\psi_{2p}^{C} = 0,51154071 * N_{\alpha}e^{-1,13674819r^{2}} + 0,61281990 * N_{\alpha}e^{-0,28830936r^{2}}$

Bazy Pople'owskie

Dla większych baz uzupełnienie o funkcje polaryzacyjne (o wyższym I) 6-31G* = 6-31(d) = VDZP

> funkcje rdzenia: 1 kontrakcja z 6 prymitywów Gaussowskich funkcje walencyjne: 2 kontrakcje (z 3 i 1 prymitywów) funkcje polaryzacyjne: 1 kontrakcja z 1 prymitywu

Funkcje dyfuzyjne:

6-31+G* j.w. + funkcja o niskim wykładniku (dalekozasięgowa)

Podsumowanie

Dobra baza – należy poszukiwać wskazówek w literaturze lub własnym doświadczeniu (różne bazy dla różnych własności)

Rutynowe obliczenia – bazy \geq VDZP

Bazy Gaussowskie:

- Pople'owskie 6-311G(d)

(dla H zwykle nie dodajemy funkcji polaryzacyjnych p)

- dla obliczeń z uwzględnieniem korelacji (MP2, CI)

correlation consistent cc-pVnZ (n=D,T,Q,5,...)

augmented aug-cc-pVnZ

Jon H₂+

 $\varepsilon = \frac{\int \psi^* \hat{H} \psi \, dV}{\int \psi^* \psi \, dV}$ $\varepsilon \int \psi^* \psi \, dV = \int \psi^* \hat{H} \psi \, dV$ $\varepsilon \left[\left(c_1 \chi_a + c_2 \chi_b \right)^2 dV = \int \left(c_1 \chi_a + c_2 \chi_b \right) \hat{H} \left(c_1 \chi_a + c_2 \chi_b \right) dV$ $\varepsilon \left[c_1^2 \int \chi_a^2 dV + c_2^2 \int \chi_b^2 dV + 2c_1 c_2 \int \chi_a \chi_b dV \right] = c_1^2 \int \chi_a \hat{H} \chi_a dV + c_2^2 \int \chi_b \hat{H} \chi_b dV + 2c_1 c_2 \int \chi_a \hat{H} \chi_b dV$ $\varepsilon \left[c_{1}^{2}+c_{2}^{2}+2c_{1}c_{2}S\right] = c_{1}^{2}H_{aa}+c_{2}^{2}H_{bb}+2c_{1}c_{2}H_{ab}$ $\frac{\partial \varepsilon}{\partial c_1} \left[c_1^2 + c_2^2 + 2c_1 c_2 S \right] + \varepsilon \left[2c_1 + 2c_2 S \right] = 2c_1 H_{aa} + 2c_2 H_{ab}$ $\frac{\partial \varepsilon}{\partial c_2} \left[c_1^2 + c_2^2 + 2c_1 c_2 S \right] + \varepsilon \left[2c_2 + 2c_1 S \right] = 2c_2 H_{bb} + 2c_1 H_{ab}$ $H_{aa} = H_{bb}$ $E[2c_1 + 2c_2S] = 2c_1H_{aa} + 2c_2H_{ab}$ $E[2c_2 + 2c_1S] = 2c_2H_{aa} + 2c_1H_{ab}$ $c_1(H_{aa} - E) + c_2(H_{ab} - SE) = 0$ $c_1(H_{ab} - SE) + c_2(H_{aa} - E) = 0$

Jon H₂+

 $\begin{vmatrix} H_{aa} - E & H_{ab} - SE \\ H_{ab} - SE & H_{aa} - E \end{vmatrix} = 0$ $(H_{aa} - E)^2 - (H_{ab} - SE)^2 = 0$ $H_{aa} - E = \pm (H_{ab} - SE)$ $H_{aa} - E = -H_{ab} + SE$ $H_{aa} - E = H_{ab} - SE$ $E + SE = H_{aa} + H_{ab}$ $E-SE=H_{aa}-H_{ab}$ $E_{+} = \frac{H_{aa} + H_{ab}}{1 + S}$ $E_{-} = \frac{H_{aa} - H_{ab}}{1 - \varsigma}$ $H_{ab} \leq 0$ $S \ll 1$ $E_{\perp} \ll E$ $H_{aa} \approx E_H = -R \frac{1}{m^2} < 0$

Z identyczności obu centrów a i b wynika $c_1^2 = c_2^2$ czyli $c_1 = \pm c_2$ $dla \ E_+ \rightarrow \psi_+ = c_1 \chi_a + c_1 \chi_b = N_+ (\chi_a + \chi_b)$ $N_+ = \frac{1}{\sqrt{2+2S}}$ $dla \ E_- \rightarrow \psi_- = c_1 \chi_a - c_1 \chi_b = N_- (\chi_a - \chi_b)$ $N_- = \frac{1}{\sqrt{2-2S}}$

Jeżeli R maleje, to |H_{ab}| rośnie

Jon H₂+

$$\begin{aligned} & \underbrace{\text{Cząsteczka H}_{2}}_{R_{A}} \\ & \widehat{\textbf{H}} = -\frac{\hbar^{2}}{2M_{A}}\Delta_{A} - \frac{\hbar^{2}}{2M_{B}}\Delta_{B} + \frac{e^{2}}{|\vec{R}|} - \frac{\hbar^{2}}{2m_{e}}(\Delta_{1} + \Delta_{2}) + \frac{e^{2}}{r_{12}} - \frac{e^{2}}{r_{A1}} - \frac{e^{2}}{r_{A2}} - \frac{e^{2}}{r_{B1}} - \frac{e^{2}}{r_{B2}} \\ & \widehat{H}\Psi(\{r\},\vec{R}\}) = E\Psi(\{r\},\vec{R}\}) \end{aligned}$$

Przybliżenie Borna-Oppenheimera: $R_{AB} = const$ $\Psi(\{r\}, \vec{R}) = \psi_e(\{r\}; R)\Psi_{vr}(\vec{R})$ Przybliżenie jednoelektronowe:

$$\begin{array}{ccc} A^{\bigcirc} & \bigcirc_{\mathsf{B}} \\ \psi_1 = \psi_A(1)\psi_B(2) \end{array} & \psi = c_1\psi_1 + c_2\psi_2 & A^{\bigcirc} & \bigcirc_{\mathsf{B}} \\ \psi_2 = \psi_A(2)\psi_B(1) \end{array}$$

$$\widehat{H} = \widehat{H}_e + \widehat{H}_{vr}$$

$$\widehat{H} = -\frac{\hbar^2}{2m_e} (\Delta_1 + \Delta_2) + \frac{e^2}{r_{12}} - \frac{e^2}{r_{A1}} - \frac{e^2}{r_{A2}} - \frac{e^2}{r_{B1}} - \frac{e^2}{r_{B2}} + \frac{e^2}{|\overrightarrow{R}|}$$

 $\widehat{H}_e\psi_e(\{r\};R) = E_e\psi_e(\{r\};R)$

Równanie elektronowe

$$\begin{aligned} \widehat{H}_{vr} &= -\frac{\hbar^2}{2M_A} \Delta_A - \frac{\hbar^2}{2M_B} \Delta_B + E_e(R) \\ \widehat{H}_{vr} \Psi_{vr}(\vec{R}) &= E_{vr} \Psi_{vr}(\vec{R}) \end{aligned} \qquad \text{Równanie wibracyjno-rotacyjne} \end{aligned}$$

Cząsteczka H₂

Wyznacznik Slatera

$$\psi = N \begin{vmatrix} \varphi_A(1)\alpha(1) & \varphi_A(2)\alpha(2) \\ \varphi_B(1)\beta(1) & \varphi_B(2)\beta(2) \end{vmatrix} = N [\varphi_A(1)\varphi_B(2) + \varphi_A(2)\varphi_B(1)] [\alpha(1)\beta(2) - \alpha(2)\beta(1)]$$

Energia całkowita:

$$E_{e} = 2 \sum_{i=1}^{n/2} h_{ii} + \sum_{i=1}^{n/2} \sum_{j=i}^{n/2} (2J_{ij} - K_{ij}) + V_{nn}$$

$$h_{ii} = \int \varphi_{i}^{*}(1) \left[-\frac{\hbar^{2}}{2m_{e}} \Delta_{1} - \sum_{A} \frac{Z_{A}e^{2}}{r_{1A}} \right] \varphi_{i}(1) dV_{1}$$

$$J_{ij} = \int \varphi_{i}^{*}(1) \varphi_{i} \ (1) \frac{e^{2}}{r_{12}} \varphi_{j}^{*}(2) \varphi_{j} \ (2) dV_{1} dV_{2}$$

$$K_{ij} = \int \varphi_{i}^{*}(1) \varphi_{j} \ (1) \frac{e^{2}}{r_{12}} \varphi_{i}^{*}(2) \varphi_{j} \ (2) dV_{1} dV_{2}$$

Energia orbitalna:

$$\varepsilon_i = h_{ii} + \sum_{j}^{n/2} \left(2J_{ij} - K_{ij} \right)$$

Średnia energia odpychania elektronów:

$$V_{ee} = \sum_{i}^{n/2} \sum_{j}^{n/2} \left(2J_{ij} - K_{ij} \right)$$

Całkowita energia elektronowa nie jest równa sumie energii orbitalnych

$$E_e = \sum_{i}^{n/2} 2\varepsilon_i - V_{ee}$$

Symetria orbitali molekularnych H₂

Ε

Indeksy dolne g oraz u wskazują na symetrię względem odbicia w środku symetrii

Symetria orbitali molekularnych powstających z orbitali p

Ε

Symetria orbitali molekularnych powstających z orbitali p_x (p_v) $1\pi_{q} (2p\pi_{q}) (1\pi^{*})$ + + ┿ + Eн + $2p_{xa}$ $2p_{xb}$ $1\pi_{u}(2p\pi_{u})(1\pi)$

Ε

Dla określenia symetrii wiązania bada się symetrię względem odbicia w płaszczyźnie prostopadłej do osi wiązania i względem obrotu wokół osi wiązania

Diagram orbitali molekularnych dla cząsteczki azotu

Diagram orbitali molekularnych dla cząsteczki tlenu

Diagram orbitali molekularnych dla cząsteczki węgla C₂

 C_2

С

С

Wiązania w H₂O

Npha MO ((MO = 4); Isovalue = 0.02)

0.360

0.261

<mark>- -0.477</mark> 🗆

<mark>- -0.685</mark> 🔲

<mark>- -1.321</mark> 🗆

-20.427

4σ

 $2p_0+1s_H$

Npha MO ((MO = 5); Isovalue = 0.02)

- -0.529

6 5

2-11

<mark>— -1.321</mark> 🗆

--20.427

Oddziaływania cząsteczek

cząsteczka A + cząsteczka B \rightarrow kompleks AB

energia oddziaływania:

 $\Delta \mathsf{E}_{\mathsf{A}\mathsf{B}} = \mathsf{E}_{\mathsf{A}\mathsf{B}} - \mathsf{E}_{\mathsf{A}} - \mathsf{E}_{\mathsf{B}}$

Jest to przybliżenie supermolekularne

Kompleks HCOOH + H₂O

Energie układów [a.u.]								
Baza	Geometria	НСООН	H ₂ O	HCOOH + H ₂ O				
dla HCOOH	optym.	-187.70019910						
dla H ₂ O	optym.		-75.58595973					
dla HCOOH + H_2O	optym.	-187.70671783	-75.59484158	-263.31946243				
dla HCOOH + H ₂ O	bez optym.	-187.70518332	-75.59398694					

Błąd superpozycji bazy

BSSE – Basis Set Superposition Error

Wyliczone efekty energetyczne

zmiana energii substratów wynikająca z zastosowania bazy kompleksu przy zachowaniu geometrii obliczonej w bazie cząsteczki

 $\label{eq:azy} \Delta \mathsf{E}_{\mathsf{Bazy}} \; (\mathsf{HCOOH}) = -187.70518332 - (-187.70019910) = -0.00498422 \; a.u. = -13.0861 \; kJ/mol \\ \Delta \mathsf{E}_{\mathsf{Bazy}} \; (\mathsf{H}_2\mathsf{O}) = -75.59398694 - (-75.58595973) = -0.00802721 \; a.u. = -21.0754 \; kJ/mol$

zmiana energii substratów w wyniku optymalizacji geometrii w bazie kompleksu

 $\label{eq:loss} \begin{array}{l} \Delta E_{deform} \; (HCOOH) = -187.70671783 - (-187.70518332) = -0.00153451 \; a.u. = -4.0289 \; kJ/mol \\ \Delta E_{deform} \; (H_2O) = -75.59484158 - (-75.59398694) = -0.00085464 \; a.u. = -2.2439 \; kJ/mol \end{array}$

Energia wiązania kompleksu (geometria wszystkich składników optymalizowana w bazie kompleksu):

 $\Delta E_{\text{kompleksu}} (\text{HCOOH-H}_2\text{O}) = -263.31946243 \cdot (-187.\ 70671783\ -75.\ 59484158) = -0.01790302 \text{ a.u.} = -47.0044 \text{ kJ/mol}$

Równanie wibracyjno-rotacyjne

$$\widehat{H}_{vr} = -\frac{\hbar^2}{2M_A} \Delta_A - \frac{\hbar^2}{2M_B} \Delta_B + E_e(R)$$
$$\widehat{H}_{vr}(\vec{R}) \Psi_{vr}(\vec{R}) = E_{vr} \Psi_{vr}(\vec{R})$$

Separacja ruchu wibracyjnego i rotacyjnego:

$$\Psi_{vr}(\vec{R}) = \Psi_v(R)\Psi_r(\chi,\theta,\varphi)$$

 $\widehat{H}_{v}\Psi_{v}(R) = E_{v}\Psi_{v}(R)$ $\widehat{H}_{r}\Psi_{r}(\chi,\theta,\varphi) = E_{r}\Psi_{r}(\chi,\theta,\varphi)$

Kąty Eulera

Energia całkowita cząsteczki w przybliżeniu adiabatycznym

$$E = E_e + E_v + E_r$$

Energia wibracyjna (E_v)

W pobliżu minimum krzywą energii potencjalnej przybliżamy parabolą, co prowadzi do równania Schrödingera dla oscylatora harmonicznego

Oscylator harmoniczny

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} + \frac{1}{2}kx^2\Psi(x) = E\Psi(x)$$

$$E = \hbar \omega \left(n + \frac{1}{2} \right)$$

$$\Psi_n(x) = e^{-\frac{1}{2}x^2} H_n(x)$$

Wielomian Hermite'a

$$\omega = \sqrt{\frac{k}{m}}$$

$$\hbar = \frac{h}{2\pi} \qquad \omega = 2\pi\nu$$

$$\hbar\omega = h\nu$$

115

Oscylator harmoniczny 2wymiarowy

$-\frac{\hbar^2}{2m}\left[\frac{d^2\Psi(\mathbf{x},\mathbf{y})}{dx^2}+\frac{d^2\Psi(\mathbf{x},\mathbf{y})}{dx^2}\right]$	$\frac{2^{2}\Psi(x,y)}{dy^{2}} + \frac{1}{2}k(x^{2} + y^{2})\Psi(x,y) = E\Psi(x,y)$	y)
$x = r \cos \varphi$	$0 < r < \infty$	
$y = r \sin \varphi$	$0 < \varphi < 2\pi$	
$\Psi_{n,l}(r,\varphi) = N_{n,l}e^{-r^2}$	$^{/2}r^{ l }L^{ l }_{(n+ l)/2}(r)e^{il\varphi}$	
	1	X
$F = \hbar \omega (n \pm 1)$		

 $E = n\omega(n + 1)$ n = 0,1,2,...l = n, n - 2, ..., -n + 2, -n

Współrzędne wibracyjne

3N współrzędnych dla przemieszczeń jąder w układzie(x,y,z)

$$d_{i\alpha}$$
; $i = 1, 2, K, N, \alpha = x, y, z$

to 3N-6 niezależnych współrzędnych wibracyjnych

$$r_k; k = 1, 2, K, 3N - 6$$

- + 3 współrzędne translacyjne
- + 3 współrzędne rotacyjne

6 warunków Eckarta
$$\sum_{i=1}^{N} m_i \hat{a}_i^{\rho} = 0$$
 $\sum_{i=1}^{N} m_i (\hat{a}_i^{\rho} \times \hat{d}_i^{\rho}) = 0$

oznacza:

- cząsteczkowy układ współrzędnych związany ze środkiem masy cząsteczki
- osie układu (x,y,z) powiązane z elementami geometrycznymi cząsteczki

Hamiltonian wibracyjny

Układ 3N-6 niezależnych oscylatorów harmonicznych HO (we współrzędnych normalnych *Q*)

równanie

$$-\frac{\eta}{2}\sum_{k=1}^{3N-6}\frac{\partial^2 \Psi_v^0}{\partial Q_k^2} + \frac{1}{2}\sum_{k=1}^{3N-6}\lambda_k Q_k^2 \Psi_v^0 = E_v^0 \Psi_v^0$$

funkcja falowa

$$\Psi_{v}^{0} = \Psi_{v_{1}}(Q_{1}) \Psi_{v_{2}}(Q_{2}) \operatorname{K} \Psi_{v_{3N-6}}(Q_{3N-6})$$

energia

$$E_{\nu}^{0} = E_{\nu}^{(1)} + E_{\nu}^{(2)} + \Lambda + E_{\nu}^{(3N-6)} = \sum_{k=1}^{3N-6} h \nu \left(v_{k} + \frac{1}{2} \right)$$

dwuwymiarowy (zdegenerowany) HO $h v (v_k + 1)$ trójwymiarowy (zdegenerowany) HO $h v (v_k + \frac{3}{2})$

Wibracje w potencjale Morse'a

potencjał Morse – bliższy rzeczywistości niż harmoniczny

uwzględnia anharmoniczność i energię dysocjacji

dokładne rozwiązanie równania Schrödingera z potencjałem Morse'a

masa zredukowana: $\frac{1}{\mu} = \frac{1}{m_a} + \frac{1}{m_b}$

(2J+1) – krotna degeneracja każdego stanu rotacyjnego

 $M = -J, -J + 1, \dots, 0, \dots, J$

Rotator sztywny (E_r)
$$E_r(J) = \frac{\hbar^2}{2\mu R^2} J(J+1) \qquad J=0, 1, 2, \dots$$

Moment
$$I = \mu R^2$$

bezwładności

Stała rotacyjna B
$$B = \frac{\hbar^2}{2\mu R^2} = \frac{\hbar^2}{2I}$$

$$E_J = BJ(J+1)$$

Poziomy energetyczne rotatora

Moment bezwładności - CO₂

$$I_{x} = \sum_{i=1}^{n} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right)$$

$$A = \sum_{i=1}^{n} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right)$$

$$A = \sum_{i=1}^{n} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right)$$

3

2

Współrzędne jąder mierzone w układzie środka masy cząsteczki

mu = 1,660538921E-27 kg

ħ = 1,0545919E-34 J*s

I= 7,1501E-42 kg*m²

B= 7,7772E-28 J

c = 299792400 m/s $hc = 1,9865E-25 J^*m = 1,9865E-27$

Stałe:

J*cm

 $B/(hc) = 0,3915 \text{ cm}^{-1}$

 $B^*c = 1,1737E+06 s^{-1} = 1,1737 MHz$

Bąk symetryczny Bąk asymetryczny Bąk sferyczny Rotator liniowy $I_{xx}^{0} = I_{yy}^{0} > I_{zz}^{0} / I_{xx}^{0} = I_{yy}^{0} < I_{zz}^{0}$ wydłużony/spłaszczo ny $I_{xx}^{0} \neq I_{yy}^{0} \neq I_{zz}^{0}$ $I_{xx}^{0} = I_{yy}^{0} = I_{zz}^{0}$ $I_{xx}^{0} = I_{yy}^{0}, \ I_{zz}^{0} = 0$ 124

Stałe rotacyjne

$$A = \frac{\hbar^2}{2I_A}$$
 $B = \frac{\hbar^2}{2I_B}$ $C = \frac{\hbar^2}{2I_C}$ $A \ge B \ge C$

Wyrażone w jednostkach energii (Joule)

Aby wyrazić je w cm⁻¹ należy każdą podzielić przez (hc)

$$A = \frac{h}{8\pi^2 cI_A} \qquad B = \frac{h}{8\pi^2 cI_B} \qquad C = \frac{h}{8\pi^2 cI_C} \qquad A \ge B \ge C$$

Energia rotacji bąka
symetrycznego wydłużonego
$$I_{xx}^{0} = I_{yy}^{0} > I_{zz}^{0}$$
$$E_{J,k} = \frac{\hbar^{2}}{2} \left[\frac{J(J+1)}{I_{yy}^{0}} + \left(\frac{1}{I_{zz}^{0}} - \frac{1}{I_{yy}^{0}}\right)k^{2} \right] \quad k = -J, -J+1, \dots, J$$

$$A = \frac{\hbar^2}{2I_{zz}} \qquad B = \frac{\hbar^2}{2I_{yy}}$$

 $A \geq B$

Przykład: chlorometan

$$E_{J,k} = BJ(J+1) + (A-B)k^2$$

Energia rotacji bąka symetrycznego spłaszczonego

ZZ

T0

$$I_{xx}^{0} = I_{yy}^{0} < I_{zz}^{0}$$

T0

$$E_{J,k} = \frac{\eta^2}{2} \left[\frac{J(J+1)}{I_{yy}^0} + \left(\frac{1}{I_{zz}^0} - \frac{1}{I_{yy}^0} \right) k^2 \right]$$

 $E_{J,k} = BJ(J+1) + (C-B)k^2$

$$k = -J, -J+1, \dots, J$$

$$B = \frac{\hbar^2}{2I_{yy}} \qquad C = \frac{\hbar^2}{2I_{zz}}$$

Г

 $B \geq C$

Hamiltonian wibracyjno-rotacyjny dla dwuatomowej cząteczki`

 $E_{vib-rot}(v,J) = \left(v + \frac{1}{2}\right)\hbar\omega - \left(v + \frac{1}{2}\right)^2\hbar\omega x_e + BJ(J+1) - DJ^2(J+1)^2$

człon harmoniczny

człon opisujący rotację sztywnej cząsteczki

człon anharmoniczny wynikający z nieharmonicznego potencjału

człon uwzględniający niesztywność cząsteczki

Wibracyjne reguły wyboru

∆v=+1

Oznaczenie przejścia v'←v" stan wyższy ←stan niższy

Przejście podstawowe (fundamental bands): $v' \leftarrow v'' = 1 \leftarrow 0$

Przejścia gorące (hot bands): $v' \leftarrow v'' = 2 \leftarrow 1$ $v' \leftarrow v'' = 3 \leftarrow 2$

Gdy potencjał jest <u>anharmoniczny</u> możliwe także przejścia $\Delta v=+2, +3,$ nadtony (overtones), np. v' \leftarrow v" = 2 \leftarrow 0

Rotacyjne reguły wyboru

Przejścia w ramach jednego stanu wibracyjnego

 $\Delta J=+1$

Przejścia wibracyjno-rotacyjne

$$\Delta V = +1 \qquad \Delta J = \pm 1$$

$$E_{vib-rot} (0, J) = \frac{1}{2} v_0 + B'' J (J+1) - D'' J^2 (J+1)^2$$

$$E_{vib-rot} (1, J) = \frac{3}{2} v_0 + B' J (J+1) - D' J^2 (J+1)^2$$

Gałąź P:
$$\Delta v = +1$$
, J-1 \leftarrow J
 $\Delta E = E_{vib-rot} (1, J-1) - E_{vib-rot} (0, J) =$
 $= v_0 + B'(J-1)J - D'(J-1)^2 J^2 - B''J(J+1) + D''J^2(J+1)^2 =$
 $= v_0 + -(B'+B'')J + (B'-B''-D'+D'')J^2 + 2(D'+D'')J^3 + ...$

Gałąź R: ∆v=+1, J+1←J
∆E =
$$E_{vib-rot}$$
 (1, J +1)- $E_{vib-rot}$ (0, J)=
= $v_0 + B'(J+1)(J+2) - D'(J+1)^2(J+2)^2 - B''J(J+1) + D''J^2(J+1)^2 =$
= $v_0 + (2B'-4D')(J+1) + (B'-B''-4D')J(J+1) + ...$

Kombinacje różnicowe w stanie podstawowym

. . .

3

GSCD – Ground State Combination Differences Różnice energii E(v,J) w stanie podstawowym:

E(0,2)-E(0,0)=R(0)-P(2)E(0,3)-E(0,1)=R(1)-P(3)E(0,4)-E(0,2)=R(2)-P(4)

$$\begin{split} \mathsf{E}(0,\mathsf{J+2})\text{-}\mathsf{E}(0,\mathsf{J}) = & \mathsf{B}_0[(\mathsf{J+2})(\mathsf{J+3})\text{-}\mathsf{J}(\mathsf{J+1})]\text{-}\\ & \quad -\mathsf{D}_0[(\mathsf{J+2})^2(\mathsf{J+3})^2\text{-}\mathsf{J}^2(\mathsf{J+1})^2]\text{=}\\ & \quad = & \mathsf{R}(\mathsf{J})\text{-}\mathsf{P}(\mathsf{J+2}) \end{split}$$

Obserwując dostatecznie dużo przejść w gałęziach P i R mających wspólne poziomy we wzbudzonym stanie wibracyjnym, można określić metodą najmniejszych kwadratów stałe rotacyjne B_0 i D_0 dla stanu podstawowego.

GSCD – przykład ¹²C¹⁶O

Р	V'	J'	V"	J"	R	V'	J'	v"	J"	R-P(exp)	obl	(e-o)^2
2135.5473	2	1	1	2	2147.0823	2	1	1	0	11.5350	11.5349	3.53E-09
2131.6326	2	2	1	3	2150.8571	2	2	1	1	19.2245	19.2244	7.74E-09
2127.6832	2	3	1	4	2154.5967	2	3	1	2	26.9135	26.9131	1.23E-07
2123.6999	2	4	1	5	2158.3008	2	4	1	3	34.6009	34.6009	1.52E-09
2119.6819	2	5	1	6	2161.9694	2	5	1	4	42.2875	42.2873	6.16E-08
2115.6301	2	6	1	7	2165.6022	2	6	1	5	49.9721	49.9720	5.07E-09
2111.5442	2	7	1	8	2169.1991	2	7	1	6	57.6549	57.6549	1.44E-12
2107.4244	2	8	1	9	2172.7599	2	8	1	7	65.3355	65.3356	4.67E-09
2103.2709	2	9	1	10	2176.2846	2	9	1	8	73.0137	73.0137	1.93E-09
2099.0838	2	10	1	11	2179.7730	2	10	1	9	80.6892	80.6891	4.58E-09
2094.8635	2	11	1	12	2183.2249	2	11	1	10	88.3614	88.3614	1.6E-09
2090.6098	2	12	1	13	2186.6402	2	12	1	11	96.0304	96.0304	6.92E-10
2086.3231	2	13	1	14	2190.0188	2	13	1	12	103.6957	103.6956	3.61E-09
2082.0034	2	14	1	15	2193.3603	2	14	1	13	111.3569	111.3569	2.04E-09
2077.6508	2	15	1	16	2196.6648	2	15	1	14	119.0140	119.0140	1.37E-11
2073.2656	2	16	1	17	2199.9322	2	16	1	15	126.6666	126.6665	1.01E-08
2068.8479	2	17	1	18	2203.1620	2	17	1	16	134.3141	134.3142	3.86E-09
2064.3980	2	18	1	19	2206.3547	2	18	1	17	141.9567	141.9567	9.85E-11
2059.9158	2	19	1	20	2209.5094	2	19	1	18	149.5936	149.5938	3.62E-08
2055.4015	2	20	1	21	2212.6266	2	20	1	19	157.2251	157.2252	4.77E-09
2050.8552	2	21	1	22	2215.7057	2	21	1	20	164.8505	164.8505	1.11E-09
2046.2770	2	22	1	23	2218.7466	2	22	1	21	172.4696	172.4696	1.1E-10
2041.6677	2	23	1	24	2221.7494	2	23	1	22	180.0817	180.0820	1.19E-07
2037.0262	2	24	1	25	2224.7141	2	24	1	23	187.6879	187.6876	8.75E-08
2032.3539	2	25	1	26	2227.6397	2	25	1	24	195.2858	195.2860	3.1E-08
2027.6500	2	26	1	27	2230.5270	2	26	1	25	202.8770	202.8769	1.79E-08
2022.9153	2	27	1	28	2233.3754	2	27	1	26	210.4601	210.4600	1.41E-08
											Σ=	5.46E-07

wywołaj plik

<u>assign</u>

2

B0= 1.922527 D0= 6.112E-06

Kombinacje różnicowe w stanie wzbudzonym

. . .

USCD – Upper State Combination Differences Różnice energii E(v,J) w stanie wzbudzonym:

E(1,2)-E(1,0)=R(1)-P(1)E(1,3)-E(1,1)=R(2)-P(2)E(1,4)-E(1,2)=R(3)-P(3)

$$\begin{split} \mathsf{E}(1,J+1)-\mathsf{E}(1,J-1) = & \mathsf{B}_1[(J+1)(J+2)-(J-1)J] - \\ & -\mathsf{D}_1[(J+1)^2(J+2)^2-(J-1)^2J^2] = \\ & = & \mathsf{R}(J)-\mathsf{P}(J) \end{split}$$

Obserwując dostatecznie dużo przejść w gałęziach P i R mających wspólne poziomy we podstawowym stanie wibracyjnym, można określić metodą najmniejszych kwadratów stałe rotacyjne B_1 i D_1 dla stanu wzbudzonego.

USCD – przykład ¹²C¹⁶O

Р	v'	J'	V"	J"	R		v'	J'	V"	J"	R-P(exp)	obl	(e-o)^2
2135.5473	2	1	1	2	2154.59	967	2	3	1	2	19.0494	19.0494	1.27E-10
2131.6326	2	2	1	3	2158.30	800	2	4	1	3	26.6682	26.6681	6.85E-09
2127.6832	2	3	1	4	2161.96	694	2	5	1	4	34.2862	34.2858	1.45E-07
2123.6999	2	4	1	5	2165.60)22	2	6	1	5	41.9023	41.9022	1E-08
2119.6819	2	5	1	6	2169.19	991	2	7	1	6	49.5172	49.5170	5.41E-08
2115.6301	2	6	1	7	2172.75	599	2	8	1	7	57.1298	57.1298	7.55E-10
2111.5442	2	7	1	8	2176.28	346	2	9	1	8	64.7404	64.7405	7.57E-09
2107.4244	2	8	1	9	2179.77	730	2	10	1	9	72.3486	72.3487	2.75E-09
2103.2709	2	9	1	10	2183.22	249	2	11	1	10	79.9540	79.9540	9.24E-10
2099.0838	2	10	1	11	2186.64	102	2	12	1	11	87.5564	87.5563	5.26E-09
2094.8635	2	11	1	12	2190.01	88	2	13	1	12	95.1553	95.1553	2.48E-09
2090.6098	2	12	1	13	2193.36	603	2	14	1	13	102.7505	102.7505	2.75E-11
2086.3231	2	13	1	14	2196.66	648	2	15	1	14	110.3417	110.3418	9.82E-09
2082.0034	2	14	1	15	2199.93	322	2	16	1	15	117.9288	117.9288	1.47E-09
2077.6508	2	15	1	16	2203.16	620	2	17	1	16	125.5112	125.5113	1.68E-08
2073.2656	2	16	1	17	2206.35	547	2	18	1	17	133.0891	133.0890	1.45E-08
2068.8479	2	17	1	18	2209.50)94	2	19	1	18	140.6615	140.6615	2.85E-11
2064.3980	2	18	1	19	2212.62	266	2	20	1	19	148.2286	148.2286	3.43E-10
2059.9158	2	19	1	20	2215.70)57	2	21	1	20	155.7899	155.7899	2.17E-09
2055.4015	2	20	1	21	2218.74	166	2	22	1	21	163.3451	163.3453	3.87E-08
2050.8552	2	21	1	22	2221.74	194	2	23	1	22	170.8942	170.8943	1.91E-08
2046.2770	2	22	1	23	2224.71	41	2	24	1	23	178.4371	178.4368	1.04E-07
2041.6677	2	23	1	24	2227.63	397	2	25	1	24	185.9720	185.9723	1.04E-07
2037.0262	2	24	1	25	2230.52	270	2	26	1	25	193.5008	193.5007	1.49E-08
2032.3539	2	25	1	26	2233.37	754	2	27	1	26	201.0215	201.0216	2.61E-09
2027.6500	2	26	1	27	2236.18	349	2	28	1	27	208.5349	208.5346	6.31E-08
2022.9153	2	27	1	28	2238.95	549	2	29	1	28	216.0396	216.0397	6.02E-09
												_	

∑= 6.33E-07

B1= 1.905024 D1= 6.113E-06

Wyznaczanie środka pasma v₀

3

Środek pasma: v = P(1) = F(1 + F(0 + F(0

$$v_0 = R(J) - E(1,J+1) + E(0,J)$$

 $v_0 = R(J) - E(1,J+1) + E(0,J)$

 $\begin{array}{l} \mathsf{v}_0 = \mathsf{P}(\mathsf{J}) - \mathsf{B}_1(\mathsf{J}\text{-}1)\mathsf{J}\text{+}\mathsf{D}_1\ (\mathsf{J}\text{-}1)^2\mathsf{J}^2\ + \mathsf{B}_0\mathsf{J}(\mathsf{J}\text{+}1)\ - \mathsf{D}_0\ \mathsf{J}^2\ (\mathsf{J}\text{+}1)^2 \\ \mathsf{v}_0 = \mathsf{R}(\mathsf{J}) - \mathsf{B}_1(\mathsf{J}\text{+}1)(\mathsf{J}\text{+}2)\text{+}\mathsf{D}_1\ (\mathsf{J}\text{+}1)^{2}(\mathsf{J}\text{+}2)^2\ + \mathsf{B}_0\mathsf{J}(\mathsf{J}\text{+}1)\ - \mathsf{D}_0 \\ \mathsf{J}^2\ (\mathsf{J}\text{+}1)^2 \end{array}$

Obliczenia wartości v₀ prowadzi się dla każdego przejścia w pasmach P i R i oblicza z nich wartość średnią.

v_0 - przykład dla ¹²C¹⁶O

Р	V'	J'	V"	J"	nu		R	V'	J'	V"	J"	nu	
2135.5473	2	1	1	2	2143.2722	2	147.0823	2	1	1	0	2143.2723	
2131.6326	2	2	1	3	2143.2721	2	150.8571	2	2	1	1	2143.2722	
2127.6832	2	3	1	4	2143.2719	2	154.5967	2	3	1	2	2143.2722	
2123.6999	2	4	1	5	2143.2722	2	158.3008	2	4	1	3	2143.2722	
2119.6819	2	5	1	6	2143.2720	2	161.9694	2	5	1	4	2143.2723	
2115.6301	2	6	1	7	2143.2722	2	165.6022	2	6	1	5	2143.2723	
2111.5442	2	7	1	8	2143.2722	2	2169.1991	2	7	1	6	2143.2722	
2107.4244	2	8	1	9	2143.2722	2	172.7599	2	8	1	7	2143.2722	
2103.2709	2	9	1	10	2143.2722	2	176.2846	2	9	1	8	2143.2722	
2099.0838	2	10	1	11	2143.2721	2	179.7730	2	10	1	9	2143.2722	
2094.8635	2	11	1	12	2143.2722	2	183.2249	2	11	1	10	2143.2722	
2090.6098	2	12	1	13	2143.2722	2	186.6402	2	12	1	11	2143.2722	
2086.3231	2	13	1	14	2143.2722	2	190.0188	2	13	1	12	2143.2723	
2082.0034	2	14	1	15	2143.2722	2	193.3603	2	14	1	13	2143.2721	
2077.6508	2	15	1	16	2143.2721	2	196.6648	2	15	1	14	2143.2721	
2073.2656	2	16	1	17	2143.2721	2	199.9322	2	16	1	15	2143.2722	
2068.8479	2	17	1	18	2143.2720	2	203.1620	2	17	1	16	2143.2720	
2064.3980	2	18	1	19	2143.2722	2	206.3547	2	18	1	17	2143.2722	
2059.9158	2	19	1	20	2143.2722	2	209.5094	2	19	1	18	2143.2720	
2055.4015	2	20	1	21	2143.2723	2	212.6266	2	20	1	19	2143.2722	
2050.8552	2	21	1	22	2143.2722	2	215.7057	2	21	1	20	2143.2722	
2046.2770	2	22	1	23	2143.2720	2	218.7466	2	22	1	21	2143.2721	
2041.6677	2	23	1	24	2143.2724	2	221.7494	2	23	1	22	2143.2721	
2037.0262	2	24	1	25	2143.2721	2	224.7141	2	24	1	23	2143.2724	
2032.3539	2	25	1	26	2143.2723	2	227.6397	2	25	1	24	2143.2721	
2027.6500	2	26	1	27	2143.2721	2	230.5270	2	26	1	25	2143.2722	
2022.9153	2	27	1	28	2143.2721	2	233.3754	2	27	1	26	2143.2722	
						2	236.1849	2	28	1	27	2143.2723	
www.otai nl	lik					2	238.9549	2	29	1	28	2143.2720	
						2	0711 6050	2	20	1	20	21/2 2710	

2241.6858 2

<u>assign</u>

30

1

29 2143.2719

B0= 1.922527 D0= 6.11E-06 B1= 1.905024

D1= 6.11E-06

nu= 2143.2722

Widmo ¹³C¹⁶O

Transmisja
$$T = \frac{I}{I_0}$$

I – natężenie światła przechodzącego przez próbkę
 I₀ – natężenie światła padającego na próbkę

Absorbancja
$$A = \log\left(\frac{1}{T}\right) = \log\left(\frac{I_0}{I}\right)$$

Absorbancja określa, jaka część promieniowania została pochłonięta:

A=0przeszło całe promieniowanieT=1
$$A=\infty$$
całe promieniowanie zostało pochłonięteT=0

Spektrometry rejestrują na ogół widma w skali transmisji.

Widmo ¹³C¹⁶O

Analiza gałęzi P i R pasma podstawowego drgania rozciągającego daje następujące wyniki:

 $B_{0} = 1,837964 \text{ cm}^{-1} \qquad B_{1} = 1,821605 \text{ cm}^{-1} \\D_{0} = 5,575^{*}10^{-6} \text{ cm}^{-1} \qquad D_{1} = 5,571^{*}10^{-6} \text{ cm}^{-1} \\D_{1} = 5,571^{*}10^{-6} \text{ cm}^{-1} \\D_{1} = 5,571^{*}10^{-6} \text{ cm}^{-1} \\Przypomnijmy: \qquad B = \frac{\hbar^{2}}{2\mu R^{2}} = \frac{\hbar^{2}}{2I} \\Stąd: \quad \frac{B_{0} \begin{bmatrix}1^{2}C^{16}O\\B_{0} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}}{B_{0} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}} = \frac{I_{0} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}}{I^{2}C^{16}O} = \frac{\mu R_{0}^{2} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}}{\mu R_{0}^{2} \begin{bmatrix}1^{2}C^{16}O\\B\\0\end{bmatrix}} = \frac{\mu R_{0}^{2} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}}{I^{2}C^{16}O} = 1,046119 \\Sprawdźmy: \quad \frac{B_{0} \begin{bmatrix}1^{2}C^{16}O\\B\\0\end{bmatrix}}{B_{0} \begin{bmatrix}1^{3}C^{16}O\\B\\0\end{bmatrix}} = \frac{1,922527}{1,837964} = 1,046009$

Jest to dowód, że obserwowane słabsze pasmo jest drganiem rozciągającym w cząsteczce ¹³C¹⁶O.

Intensywność przejść rotacyjnych

Przejścia rotacyjne w ramach podstawowego stanu wibracyjnego

$$I_{rot} \approx |\vec{\mu}|^2 (2J+1) e^{-\frac{E_{rot}}{kT}}$$

Przejścia wibracyjno- rotacyjne z podstawowego stanu wibracyjnego

$$I_{vib,rot} \approx (P_{v' \leftarrow v''})^2 (2J+1) e^{-\frac{E_{vib,rot}}{kT}}$$

(2J+1) – stopień degeneracji stanu niższego k = 1.380658E-23 J/deg (stała Boltzmana) T – temperatura w skali Kelvina

Wyznaczenie temperatury rotacyjnej z widma ¹³C¹⁶O

Gałąź P

J	E(J) I	nt_obl I	nt_exp_P	(e-o)^2
0	0	0.052421		
1	3.675905	0.154936	0.211749	0.003228
2	11.02758	0.250642	0.305692	0.00303
3	22.05476	0.335554	0.378366	0.001833
4	36.75704	0.406458	0.43172	0.000638
5	55.13389	0.461109	0.459239	3.5E-06
6	77.18464	0.498335	0.485285	0.00017
7	102.9085	0.518045	0.514058	1.59E-05
8	132.3045	0.521143	0.489271	0.001016
9	165.3716	0.509364	0.479119	0.000915
10	202.1085	0.485063	0.446468	0.00149
11	242.5141	0.450972	0.439332	0.000135
12	286.5867	0.409966	0.399873	0.000102
13	334.3247	0.364839	0.370603	3.32E-05
14	385.7265	0.318137		
15	440.7902	0.272024	0.294809	0.000519
16	499.5136	0.228215	0.259272	0.000965
17	561.8949	0.187949	0.224834	0.00136

Korzystamy z dodatku Solver

k=	6.95E-01cm-1/K
T=	354.81365K
kT=	246.60924cm-1
N=	0.0524209

Rotacyjne widma Ramana
Rozpraszanie promieniowania

Czy promieniowanie elektromagnetyczne, w którym brak fotonów pasujących do odstępów między poziomami energetycznymi, w ogóle nie oddziałuje z cząsteczkami?

- Molekuły zawierają ładunki elektryczne dodatnie i ujemne, a składowa elektryczna promieniowania elektromagnetycznego indukuje w nich elektryczny moment dipolowy proporcjonalny do natężenia E oscylującego pola elektrycznego, gdzie współczynnikiem proporcjonalności jest polaryzowalność cząsteczki.
- Polaryzowalność molekuły określa stopień rozproszenia światła.
- Polaryzowalność cząsteczki jest wielkością anizotropową (w równych odległościach od środka molekuły, może mieć różne wartości, gdy mierzona w różnych kierunkach).
- Polaryzowalność jako potencjalna zdolność przemieszczania się elektronów względem jąder w polu elektrycznym.

Rozpraszanie promieniowania

$$\mu = \alpha E$$
$$E = A \sin 2\pi c \, \tilde{v}t$$

Oscylacje indukowanego momentu dipolowego są modulowane przez rotacje cząsteczki. W czasie rotacji cząsteczki z częstością \tilde{v}_{rot} , α zmienia się periodycznie.

$$\alpha = \alpha_{0,r} + \alpha_{1,r} \sin 2\pi c (2\tilde{\nu}_{rot})t$$

$$\mu = \alpha_{0,r} A \sin 2\pi c \tilde{\nu}t$$

$$-\frac{1}{2} \alpha_{1,r} A \cos 2\pi c (\tilde{\nu} + 2\tilde{\nu}_{rot})t$$

$$+\frac{1}{2} \alpha_{1,r} A \cos 2\pi c (\tilde{\nu} - 2\tilde{\nu}_{rot})t$$

Rozpraszanie promieniowania

Wszystkie trzy człony opisują rozpraszanie promieniowania:

-pierwszy odpowiada rozpraszaniu Rayleigha (niezmieniona liczba falowa)

-drugi opisuje rozproszenie antystokesowskie

-trzeci człon ramanowskie rozproszenie stokesowskie

Rotacyjne widma Ramana cząsteczek dwuatomowych i wieloatomowych

1. Reguly wyboru: $\Delta J = 0, \pm 2$

Rozpraszanie Rayleigha

Składowa stokesowska Składowa antystokesowska

Diagram poziomów energii rotacyjnej

Rotacyjne widmo Ramana

Rotacyjne widma Ramana cząsteczek dwuatomowych i wieloatomowych

Ramanowskie przesunięcie wynika z różnicy energii między poziomami:

$$\left|\Delta \widetilde{\nu}\right| = F(J+2) - F(J)$$

 $\Delta \tilde{v} < 0$ dla stokesowkich linii

 $\Delta \tilde{v} > 0$ dla antystokesowkich linii

Jeśli zaniedbamy odkształcenie odśrodkowe, to dla molekuł w zerowym stanie wibracyjnym mamy:

$$\widetilde{v} = 4BJ + 6B$$

Widmo Ramana złożone jest z linii równo oddalonych o siebie o 4B, a odległość pierwszej linii stokesowkiej od antystokesowskiej wynosi 12B.

Rotacyjne widma Ramana cząsteczek dwuatomowych i wieloatomowych

Jeśli weźmiemy pod uwagę odkształcenie odśrodkowe, to wyrażenie na przejście ramanowskie jest:

$$\left|\widetilde{\nu}\right| = \left(4BJ - 6D\right)\left(J + \frac{3}{2}\right) - 8D\left(J + \frac{3}{2}\right)^{2}$$

Rotacyjne widmo Ramana składa się z gałęzi S i O:

ΔJ-202GałąźOQSOstatecznie, przejścia w części stokesowskiej widma mają częstości:

$$\widetilde{\nu}(J+2 \leftarrow J) = \widetilde{\nu}_0 - \{F(J+2) - F(J)\} = \widetilde{\nu}_0 - 2B(2J+3)$$

a w części antystokesowskiej:

$$\widetilde{v}(J-2 \leftarrow J) = \widetilde{v}_0 - \{F(J) - F(J+2)\} = \widetilde{v}_0 + 2B(2J-1)$$

Rotacyjne widmo Ramana ¹⁵N₂

Figure 5.17 Rotational Raman spectrum of ${}^{15}N_2$. (The lines marked with a cross are grating 'ghosts' and not part of the spectrum.) J. Michael Hollas, Modern Spectroscopy, J.Wiley&Sons 1992

 $\lambda = 476,5 \text{ nm}$ $B_0 = 1,857672 (27) \text{ cm}^{-1}$ $r_0 = 1,099985 (10) \text{ Å}$ $r_e = 1,097614 (30) \text{ Å}$

153

Transformacja Fouriera

Transformacja Fouriera

$$f(t) = \int_{0}^{+\infty} F(v) e^{i2\pi v t} dv$$
$$F(v) = \int_{-\infty}^{+\infty} f(t) e^{-i2\pi v t} dt$$
154

Transformacja Fouriera

Transformacja Fouriera

Spektroskopia Fouriera w NMR

Przejście emisyjne między dwoma stanami

$$\begin{split} \tau \Delta E &\geq \hbar \\ \Delta E &= h \; \Delta v \\ \Delta v &\geq 1/(2\pi\tau) \quad \text{ czas życia wzbudzonego stanu} \end{split}$$

ν

Spektroskopia Fouriera w IR do UV

Brak jest detektorów mogących dokonać bezpośredniej transformacji Fouriera dla częstości v > 600 GHz.

Dlatego wykorzystuje się interferometr Michelsona

158

Interferencje

Źródło szerokopasmowe i odpowiedni interferogram

J. Michael Hollas, Modern Spectroscopy, J.Wiley&Sons 1992

Obraz źródła szerokopasmowego z wąską absorpcją

Figure 3.15 Wavenumber domain spectrum of a broad band source with a narrow absorption.

J. Michael Hollas, Modern Spectroscopy, J.Wiley&Sons 1992

00

A1, A2ApertuBSBeamsCCCube-CD1-D4DetectorFOpticalMSMirrorSM1-SM5SelectionSP1,SP2Sample	res plitter Corner Retroreflectors ors Filter Scanner on Mirrors Positions		MS
D1 D3 D1 L7 SM4 H1 D2 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4	SM3 SP1 Sample Compartment	A2 1 1 1 1 1 1 1 1 1 1 1 1 1	BS CC
			Sources 1 2030

Figure 5.4. The high-resolution Bruker IFS 120 HR spectrometer using cube corners [Reproduced by permission of Bruker UK Limited.]

G.Duxbury, Infrared Vibration-Rotation Spectroscopy, Wiley 2000

Figure 3.16 (a) Infrared interferogram of the absorption spectrum of air in the 400-3400 cm⁻¹ region and (b) the Fourier transformed spectrum.

J. Michael Hollas, Modern Spectroscopy, J.Wiley&Sons 1992

165

Obliczenia G03W

- określanie geometrii cząsteczki
- korzystanie z poszerzonej bazy funkcyjnej
- cząsteczka w rozpuszczalniku
- widmo NMR

Macierz Z a układ kartezjański

 H_2O_2

Input orientation in Cartesian coordinates:

Center	Atomic	Atomic	Co	ordinates (A	Angstroms)
Number	Number	Type	X	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	1	0	0.000000	0.000000	0.960000
3	8	0	1.244508	0.000000	-0.440000
4	1	0	1.244508	0.000000	-1.400000

Symbole

- B Bond (długość wiązania)
- A Angle (kąt między wiązaniami)
- D Dihedral angle (kąt dwuścienny)

Symbolic 2	Z-matri	x:					
Charge =	0 Mult	iplicity	= 1				
0							
Н	1	B1					
0	1	B2	2	A1			
Н	3	B3	1	A2	2	D1	0
Variab	les:						
B1	().96					
B2	1	.32					
B3	().96					
A1	10	9.471	22				
A2	10	9.471	22				
D1	18	30.					

Input acetylen.gjf

%chk=C:/G03W/zadania/acetylen.chk %mem=6MW %nproc=1 # opt hf/3-21g geom=connectivity

acetylen

0 1 C H X

X C

Н

1	B1				
1	B2	2	A1		
3	B3	1	A2	2	D1
1	B4	3	A3	4	D2
5	B5	4	A4	3	D3

B1	1.07000000
B2	1.61627231
B3	1.2000000
B4	1.20000000
B5	1.07000000
A1	90.0000000
A2	90.0000000
A3	90.0000000
A4	90.0000000
D1	180.0000000
D2	0.0000000
D3	180.0000000
1 2 1.0 3	3.0
2	
3 4 1.0	
4	

561.043.0

formic in complex

7 8

BSSE – użycie symbolu Bq

0 1 O C H H O-Bq H-Bq H-Bq	1 2 1 3 1 2 6	B1 B2 1 B3 3 B4 2 B5 3 B6 1 B7 1	A1 A2 2 A3 1 A4 2 A5 3 A6 3	D1 D2 D3 D4 D5
B1 B2 B3 B4 B5 B6 B7 A1 A2 A3 A4 A5 A6 D1 D2 D3 D4 D5 1 3 1.0 4 2 3 2.0 3 5 1.0 4 5	2.25253 1.21459 0.99722 1.07522 2.56600 1.97233 0.96370 28.8105 112.0763 123.3422 94.5093 76.8934 134.2613 0.48260 0.3298 178.5713 -111.196	3881 9708 1958 1989 3760 2403 6351 57123 37362 15893 98979 8762 72458 8929 13051 1313 89465 56524		

water in complex

formic+water complex

A1 A2 2 A3 2 A4 1 A5 4 A6 7

D1 D2 D3 D4 D5

0 1 O-Bq O-Bq C-Bq H-Bq H-Bq O H H	1 2 1 3 1 2 6	B1 B2 1 B3 3 B4 2 B5 3 B6 1 B7 1	A1 A2 2 A3 1 A4 2 A5 3 A6 3	D1 D2 D3 D4 D5	01 0 H H 0 C 0 H H	1 1 4 5 6 5	B1 B2 2 B3 3 B4 1 B5 4 B6 5 B7 6	231455
B1=2.25 B2=1.21 B3=0.99 B4=1.07 B5=2.56 B6=1.97 B7=0.96 A1=28.8 A2=112 A3=123 A4=94.5 A5=76.8 A6=134 D1=0.48 D2=-179 D3=0.32 D4=178 D5=-111	253881 459708 721958 521989 660876 232403 6376351 61057123 .07637362 .34215893 60938979 9348762 .26172458 8268929 9.90013051 2981313 .57189465 1.19656524				B ⁴ B2 B3 B4 B5 B6 B7 A4 A2 A3 A4 A4 A5 D1 D2 D3 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76000 95000 91000 60000 63000 22000 22000 058000 638000 638000 24000 638000 248000 866000 377000 54000 71000 711000	
1 3 1.0 4 2 3 2.0 3 5 1.0 4 5 6 7 1.0 8 7 8	4 1.0 3 1.0				1 2 2 3 4 5 5 6 6 7 7 8	1.0 3 1.0 2.0 1.5 8 1.0 1.0		

Efekty rozpuszczalnikowe

- efekty bliskiego zasięgu dotyczące pierwszej powłoki solwatacyjnej
 - wiązania wodorowe
 - preferencyjna orientacja cząsteczek w poblizu cząsteczki solwatowanej
- efekty dalekozasięgowe związane z polarnością rozpuszczalnika

Entalpia swobodna solwatacji

$$\Delta G_{solv} = \Delta G_{elektrostat} + \Delta G_{dyspersja} + \Delta G_{wnęka}$$

- modele dyskretne uwzględnienie explicite pewnej liczby cząsteczek rozpuszczalnika (oparte na metodzie Monte Carlo)
- modele ciągłe cząsteczka w otoczeniu izotropowym charakteryzowanym przez przenikalność dielektryczną ε
 - rozmiar i kształt wnęki
 - uwzględnienie wkładów dyspersyjnych
 - sposób opisu substancji rozpuszczonej
 - sposób opisu rozpuszczalnika

Pole reakcji

• SCRF – Self Consistent Reaction Field

 iteracyjne rozwiązanie w polu samouzgodnionym

- PCM Polarizable Continuum Model
 - cząsteczka umieszczona we wnęce zbudowanej ze sfer scentrowanych na poszczególnych atomach lub grupach atomów (promienie van der Waalsa)

Formaldehyd

opt freq b3lyp/6-31+g(d,p) scrf=(scipcm,solvent=water) geom=connectivity

formaldehyd woda

Symbolic Z	Z-matri	x:					
Charge =	0 Mul	tiplicity	/ = 1				
С							
0	1	B1					
Н	1	B2	2	A1			
Н	1	B3	2	A2	3	D1	0
Variab	oles:						
B1		1.2584	ļ				
B2		1.07					
B3		1.07					
A1	12	20.					
A2	12	20.					
D1	-18	80.					

Wpływ rozpuszczalnika na stan równowagi chemicznej

8-hydroksychinolina w różnych rozpuszczalnikach

rotacja grupy OH

przeniesienie protonu

Ścieżka reakcji

HCN

 \leftrightarrow

HNC

🔝 G2:M1:V1 - Display Vibrations					
#	7	Freq	Infrared		
	1	898.894	40.8172		
	2	898.894	40.8172		
	3	2420.18	8.7909		
	4	3650.74	65.7226		

🕄 G2:M1:V1 - Display Vibrations					
# /	Freq	Infrared			
1	606.565	205.119			
2	606.565	205.119			
3	2298.7	83.4239			
4	4102.04	354.691			

Energy = -92.90200273 hartree

Energy = -92.88556470 hartree

<u>film</u>

NMR – etanol

Wykonanie:

- 1) Optymalizacja geometrii w zadanej bazie
- # opt hf/6-311g(d) geom=connectivity
- Uzyskany plik .log zamieniony na .gjf w celu:
- 2) Obliczenia przesunięć chemicznych
- # nmr=giao hf/6-311g(d) geom=connectivity

NmrData NItems = 1 SCF GIAO Magnetic shielding NAtoms = 9 ? Isotropic = 0 C Isotropic = 178.004 C Isotropic = 142.363 H Isotropic = 31.3241 H Isotropic = 31.9226 H Isotropic = 31.3241 H Isotropic = 29.3651 H Isotropic = 29.3651 O Isotropic = 328.066 H Isotropic = 33.0682

Wykonanie zadań obliczeniowych w Gaussian

- Obliczenia dla cząsteczek wymagają optymalizacji geometrii
- Funkcja "Clean" w GaussView nie jest wykonywana metodą ab initio i nie daje poprawnej geometrii
- Obliczenia dla jonów wymagają podanie ładunku w zakładce Method (Charge)
- W pliku .gjf można zobaczyć polecenia dla zadania
- Szczegóły zadania obliczeniowego są określane przez słowa kluczowe w linii zadania
- Wiele elementów zadania można określić w Gauss View
- Obliczenia częstości drgań wykonujemy dla zoptymalizowanej geometrii – są to drgania wokół minimum globalnego
- Wyżej energetyczne konformery tworzą minima lokalne
- Droga między minimami prowadzi poprzez punkt siodłowy jedno drganie o częstości ujemnej
Jak określić symetrię?

Porównanie grupy punktowej i grupy permutacji-inwersji (PI) na przykładzie cząsteczki wody H₂O

Operacja	Grupa punktowa	Grupa PI
Tożsamość	E	E
Obrót o 180°	C_2	(12)
Odbicie w płaszczyźnie yz	σ_{vz}	E*
Odbicie w płaszczyźnie xz	σ_{xz}	(12)*

Grupa symetrii C_{2v}

Tabela charakterów dla grupy C_{2v}

PI	Ш	(12)	E*	(12)*	Przykład
C _{2v}	ш	C ₂	σ_{yz}	σ_{xz}	funkcji
A ₁	1	1	1	1	Z
A ₂	1	1	-1	-1	R _z
B ₁	1	-1	-1	1	x, R _y
B ₂	1	-1	1	-1	y, R _x

reprezentacje nieprzywiedlne

Symetria funkcji całkowitej

 $\Psi_{total} = \Psi_e \Psi_w \Psi_r \Psi_{spin}$

 Ψ_{spin} to funkcja spinowa jąder atomów zamieniających sie miejscami w wyniku działania operacji symetrii.

Przykład 1: H₂O

jądra H są fermionami, zatem: (12) $\Psi_{\text{total}} = -\Psi_{\text{total}}$

 Ψ_{total} należy do reprezentacji B_1 lub B_2 , bo znak funkcji Ψ_{total} dla operacji * nie jest określony

Bazowe funkcje spinowe	E	(12)	E*	(12)*
$\alpha(1)\alpha(2)$	$\alpha(1)\alpha(2)$	$\alpha(2)\alpha(1)$	$\alpha(1)\alpha(2)$	$\alpha(2)\alpha(1)$
α(1)β(2)	α(1)β(2)	$\alpha(2)\beta(1)$	α(1)β(2)	$\alpha(2)\beta(1)$
$\alpha(2)\beta(1)$	α(2)β(1)	$\alpha(1)\beta(2)$	α(2)β(1)	$\alpha(1)\beta(2)$
$\beta(1)\beta(2)$	$\beta(1)\beta(2)$	β(2)β(1)	β(1)β(2)	β(2)β(1)
Γ _{spin} (symetria funkcji spinowej)	4	2	4	2

Symetria funkcji całkowitej

Reprezentacja przywiedlna (redukowalna) funkcji spinowej składa się z następujących reprezentacji nieprzywiedlnych:

 $\Gamma_{spin} = 3 A_1 + B_2$

	E	(12)	E*	(12)*
A ₁	1	1	1	1
A ₁	1	1	1	1
A ₁	1	1	1	1
B ₂	1	-1	1	-1
suma	4	2	4	2
$\Gamma_{\rm spin}$	4	2	4	2

Jądrowe wagi statystyczne

 $\Psi_{total} = \Psi_e \Psi_w \Psi_r \Psi_{spin}$

Całkowita funkcja falowa dla H₂O musi należeć do reprezentacji B₁ lub B₂.

$$\Gamma_{ewr}\otimes\Gamma_{spin}\in B_1\ lub\ B_2$$

Jeżeli funkcja $\Psi_e \Psi_w \Psi_r$ ma określona symetrię (należy do określonej reprezentacji nieprzywiedlnej), to przez jaką funkcję spinową musi być pomnożona, aby całkowita funkcja zawierała reprezentacje B₁ lub B₂?

Γ _{ewr}	Г _{spin}	Γ _{total}	waga
A ₁	B ₂	B ₂	1
A ₂	B ₂	B ₁	1
B ₁	3A ₁	B ₁	3
B ₂	3A ₁	B ₂	3

Przejścia ze stanów o symetrii B_1 lub B_2 będą 3 razy bardziej intensywne niż przejścia ze stanów o symetrii A_1 lub A_2 .

Wagi statystyczne w ¹²C¹⁶O₂

Spin dla jądra ¹⁶O wynosi 0 – to jest bozon, σ (¹⁶O)=0

(12) $\Psi_{total} = +\Psi_{total}$

 Ψ_{total} należy do reprezentacji A_1 lub A_2 w grupie C_{2v}

Bazowe funkcje spinowe	E	(12)	E*	(12)*
σ(1) σ(2)	σ(1) σ(2)	σ(2) σ(1)	σ(1) σ(2)	σ(2) σ(1)
Γ _{spin} (symetria funkcji spinowej)	1	1	1	1

Rozkład Γ_{spin} na reprezentacje nieprzywiedlne:

 $\Gamma_{spin} = A_1$

Wagi statystyczne w ¹²C¹⁶O₂

Pamiętajmy, że Ψ_{total} należy do reprezentacji A_1 lub A_2 w grupie C_{2v} .

Γ _{ewr}	Г _{spin}	Γ _{total}	waga
A ₁	A ₁	A ₁	1
A ₂	A ₁	A ₂	1
B ₁	brak	brak	0
B ₂	brak	brak	0

Przejścia ze stanów o symetrii A_1 lub A_2 posiadają tę samą intensywność, a przejścia ze stanów o symetrii B_1 lub B_2 są wzbronione.

Dla cząsteczki liniowej funkcje rotacyjne dla J parzystych posiadają symetrię $\Sigma_g{}^+$, a dla J nieparzystych $\Sigma_g{}^-$, odpowiadające symetrii A₁ i B₁ w grupie C_{2v} .

Jeżeli badamy przejścia rotacyjne ze stanu elektronowego o symetrii A_1 , stanu wibracyjnego o symetrii A_1 , to obserwować będziemy tylko przejścia rotacyjne ze stanów o J parzystym.